Studies on the variables and kinetics of SCP production from nopal fruit juice

  • S. N. Mukhopadhyay
  • A. Ornelas Vale
  • E. Camargo Rubio
  • G. Cassarubias Arcos
Industrial Microbiology

Summary

Submerged batch cultivation under controlled environmental conditions of pH 3.8, temperature 30°C, and KLa≥200 h−1 (above 180 mMO2l−1 h−1 oxygen supply rate) produced a maximum (12.0 g·l−1) SCP (Candida utilis) yield on the deseeded nopal fruit juice medium containing C/N ratio of 7.0 (initial sugar concentration 25 g·l−1) with a yield coefficient of 0.52 g cells/g sugar. In continuous cultivation, 19.9 g·l−1 cell mass could be obtained at a dilution rate (D) of 0.36 h−1 under identical environmental conditions, showing a productivity of 7.2 g·l−1·h−1. This corresponded to a gain of 9.0 in productivity in continuous culture over batch culture. Starting with steady state values of state variables, cell mass (CX−19.9 g·l−1), limiting nutrient concentration (Cln−2.5 g·l−1) and sugar concentration (CS−1.5 g·l−1) at control variable conditions of pH 3.8, 30°C, and KLa 200 h−1 keeping D=0.36 h−1 as reference, transient response studies by step changes of these control variables also showed that this pH, temperature and KLa conditions are most suitable for SCP cultivation on nopal fruit juice. Kinetic equations obtained from experimental data were analysed and kinetic parameters determined graphically. Results of SCP production from nopal fruit juice are described.

Keywords

Candida Cell Mass Batch Cultivation Dilution Rate Continuous Cultivation 

Nomenclature

Cln

concentration of ammonium sulfate (g·l−1)

CS

concentration of total sugar (g·l−1)

CX

cell concentration (g·l−1)

D

dilution rate (h−1)

Kln

Monod's constant (g·l−1)

m

maintenance coefficient (g ammonium sulfate cell−1 h−1)

m(S)

maintenance coefficient (g sugar g cell−1 h−1)

t

time, h

Y

yield coefficient (g cells/g ammonium sulfate)

Ym

maximum of Y

YS

yield coefficient based on sugar consumed (g cells · g sugar−1)

YS(m)

maximum value of YS

µm

maximum specific growth rate constant (h−1)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiba, S., Humphrey, A.E., Millis, N.F. (1973). Biochemical Engineering. Tokyo: University of Tokyo PressGoogle Scholar
  2. A.O.A.C. (1970). Ed. Official methods of analysis, 11th edn. Washington D.C.Google Scholar
  3. Camargo Rubio, E., Ornelas Vale, A., Cassarubias Arcos, G., Nagai, S. (1977). J. Ferment. Technol. 55, 56Google Scholar
  4. Herbert, D., Phipps, P.J., Strange, R.E. (1971). Methods in microbiology, Vol. 5B, p. 209 (Norris, J.R., Ribbons, D.W., eds.). London: Academic PressGoogle Scholar
  5. Hofsten, B.V. (1976). In: Food from wastes, p. 156 (Birch G.G., Parker, K.J., Worgen, J.T., eds.). Appl. Sci. Pub. Ltd.Google Scholar
  6. McDonald, V. (1963). J. Food Sci. 28, 135Google Scholar
  7. Mukhopadhyay, S.N., Ghose, T.K. (1976). J. Ferment. Technol. 54, 406Google Scholar
  8. Ornelas Vale, A., Camargo Rubio, E., Cassarubias Arcos, G., Nagai, S. (1977). J. Ferment. Technol. 55, 50Google Scholar
  9. Paredes-López, O., Vital Bori, G., Camargo Rubio, E. (1974). J. Ferment. Technol. 52, 592Google Scholar
  10. Paredes-López, O., Camargo Rubio, E., Ornelas Vale, A. (1976). Appl. Env. Microbiol. 31, 592Google Scholar
  11. Pina-Lujan, I. (1970). Cactaceas y Suculentas Mexicanas 15, 64Google Scholar
  12. Peitersen, N. (1975). Biotechnol. Bioeng. 17, 1242Google Scholar
  13. Rockwell, P.J. (1976). Single cell proteins from cellulose and hydrocarbons. Noyes Data Corporation, Park RidgeGoogle Scholar
  14. Uden, N. van (1971). In: The yeasts, Vol. 2, p. 104 (Rose, A., Harrison, J.S., eds.). London: AcademicGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • S. N. Mukhopadhyay
    • 1
  • A. Ornelas Vale
    • 1
  • E. Camargo Rubio
    • 1
  • G. Cassarubias Arcos
    • 1
  1. 1.Biotechnology DepartmentLaboratorios Nacionales de Fomento IndustrialMexico 10

Personalised recommendations