Investigation on the operating, variables of potato starch fermentation by Schwanniomyces castellii

  • Mauro Moresi
  • Maria Antonietta Solinas
  • Stefano Matteucci
Industrial Microbiology


The fermentation of potato starch by Schwanniomyces castellii IMAT 3754 was studied at differentsubstrate concentrations, pH values, and nutrient supplementation in a shaken-flask fermenter in a composite design experiment.

The experimental biomass yields were fitted to the only two significant factors (“substrate inhibition” and “nutritional” factors) with a mean percentage error smaller than 10% by means of multiple regression analysis.

The optimal conditions for maximum cell yield were first established experimentally, and then applied to other starchy materials, such as soluble maize starch, maize starch, tapioca and rice flour. They were then scaled-up in a laboratory fermenter, thus allowing a preliminary kinetic analysis of this fermentation process to be performed.


Biomass Fermentation Starch Multiple Regression Analysis Tapioca 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A.O.A.C. (ed) (1970) Official methods of analysis, 11th edn. Washington DCGoogle Scholar
  2. ASTM Standards (1964) Industrial water; atmospheric analysis. Part 23, p 233, DGoogle Scholar
  3. Blakebrough N, Moresi M (1981a) Scale-up of whey fermentation in a pilot-scale fermenter. Eur J Appl Microbiol Biotechnol 12:173–178Google Scholar
  4. Blakebrough N, Moresi M (1981b) Modelling of the process yields of a whey fermentation. Eur J Appl Microbiol Biotechnol 13:1–9Google Scholar
  5. Clementi F, Rossi J, Tuttobello L (1979) Produzione di biomassa da substrati amilacei. II) Rilievo delle, condizioni per la produzione su scale pilota. Proceedings of the 38th Meeting of the Italian society of Microbiology Section TUEMA, Assisi pp 496–497Google Scholar
  6. Clementi F, Tuttobello L, Rossi J, Ceccarelli S (1980) Produzione di biomassa da substrati amilacei. III Studi su scala pilota. Proceedings of the 19th National Congress of the Italian Society of Microbiology, Catania (in press)Google Scholar
  7. Commission of the European Communities (1981) Potato products: production and markets in the European Communities. N. 75 ECSC-EEC-EAEC, BrusselsGoogle Scholar
  8. Costamagna L, Clementi F, Rossi J (1978) Produzione di biomassa da lieviti su substrati amilacei. Proceedings of the 18th National Congress of the Italian Society of Microbiology, Fiuggi Terme pp 267–272Google Scholar
  9. Davies OL (1956) The design and analysis of industrial experiments. Imperial Chemical Inustries Ltd, LondonGoogle Scholar
  10. Grames LM, Kueneman RW (1969) Primary treatment of potato processing wastes with byproduct feed recovery Journal WPCF 41:1358–1367Google Scholar
  11. Himmelblau DM (1970) Process analysis by statistical methods. J Wiley, New YorkGoogle Scholar
  12. Jarl K, Tveit M (1963) A method for removal of starch from industrial waste liquids by symbiotic cultivation of yeasts. Socker Handl 18:25–28Google Scholar
  13. Jarl K (1969) Symba yeast process. Fd Technol 23:1009–1012Google Scholar
  14. Jarl K (1971) Utilization of waste materials by fermentation with special referece to the Symba yeast process Socker Handl 25:4–11Google Scholar
  15. Knorr D (1977) Protein recovery from waste, effluents of potato processing plants. J Food Technol 12:563–580Google Scholar
  16. MacLennan DG (1976) Single-cell protein from starch: a new concept in protein production. Search 7:155–161Google Scholar
  17. Monod J (1942) Récherches sur la croissance des cultures bacteriennes Hermann et Cie, ParisGoogle Scholar
  18. Moreton RS (1978) Growth of Candida utilis on enzymatically hydrolyzed potato waste. J Appl Bacteriol 44:373–382Google Scholar
  19. Moulin G, Galzy P (1978a): Etude de l'α-amylase de la paroi de Pichia Burtonii Boidin. Z. Allg Mikrobiol 18:269–274Google Scholar
  20. Moulin G, Galzy P (1978b) Remarque sur la régulation de la biosynthèse de l'α-amylase de Pichia burtonii B. Z. Allg. Mikrobiol. 18:329–333Google Scholar
  21. Moulin G, Galzy P (1978c) Amylase activity of Toulopsis ingegniosa Di Menna. Folia Microbiol 23:423–427Google Scholar
  22. Moulin G, Galzy P (1979) Study of an amylase and its regulation in Lipomyces starkeyi. Agric Biol Chem 43:1165–1171Google Scholar
  23. Oteng-Gyang K, Moulin G, Galzy P (1980) Effect of medium composition on excretion and biosynthesis of the amylases of Schwanniomyces castellii. Eur J Appl Microbiol Biotechnol 9:129–132Google Scholar
  24. Oteng-Gyang K, Moulin K, Galzy P (1980b) Influence of amylase excretion of biomass production by amylolytic yeasts. Acta Microbiologica Acad Sci Hung 27:155–159Google Scholar
  25. Pirt SJ (1975) Principles of microbial and cell cultivation Halsted, Wiley, New YorkGoogle Scholar
  26. Reiser CO (1954) Torula yeast from potato starch wastes. Agric Food Chem 2:70–74Google Scholar
  27. Skogman H (1976) Food from waste. In; Birch GG, Parker KJ, and Worgan JT (eds) Applied Science Publishers London, pp 167–179Google Scholar
  28. Tong PQ, Simard RE, Riel RR (1973) Selection d'une souche de Rhodotorula pour la production de protéines sur pomme de terre. J Inst Can Sci Technol Aliment 6:239–243Google Scholar
  29. Willard MJ, Paithorp RE, Smith O (1967) Waste disposal, Chap. 21. In: Talburt WF, Smith O (eds) Potato processing. The AVI Publ. Co., Westport, Conn., pp 551–579Google Scholar
  30. Wolfson-Interplan (1974) Report on “Conversion of organic wastes into marketable protein”, vol. 4. Survey of organic wastes and prospects for conversion to SCP, pp 105–107Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Mauro Moresi
    • 1
  • Maria Antonietta Solinas
    • 1
  • Stefano Matteucci
    • 1
  1. 1.Istituto di Chimica Applicata e Industriale, Faculty of EngineeringUniversity of RomeRomaItaly

Personalised recommendations