International Journal of Thermophysics

, Volume 8, Issue 6, pp 681–694 | Cite as

Saturation vapor pressure and critical constants of H2O, D2O, T2O, and their isotopic mixtures

  • N. Matsunaga
  • A. Nagashima


Reliable data on the vapor pressure and critical constants of H2O isotopes and their isotopic mixtures are required for the generation of thermophysical properties data over a wide range of temperatures and pressures. In this study, vapor pressure equations for D2O and T2O have been developed based on the latest experimental and theoretical information. Considering the similarity among H2O isotopes, the functional form of the Saul and Wagner equation, fully proven for H2O, has been employed. The present equation for D2O shows a lower trend by up to 0.09% than the widely used Hill and MacMillan equation at temperatures below 150°C. For the vapor pressure of the isotopic mixtures, the available experimental data have been examined for the validity of Raoult's law. Then it has been shown that the critical temperature and the critical pressure of the isotopic mixture can also be predicted as simple mole-fraction average values.

Key words

critical constants deuterium oxide heavy water isotope effect saturation vapor pressure tritium oxide water 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Holborn and F. Henning, Ann. Phys. Ser. 4 26:833 (1908); K. Scheel and W. Heuse, Ann. Phys. Ser. 4 29:723 (1909); K. Scheel and W. Heuse, Ann. Phys. Ser. 4 31:715 (1910); L. Holborn and A. Baumann, Ann. Phys. Ser. 4 31:945 (1910).Google Scholar
  2. 2.
    A. Egerton and G. S. Callendar, Phil. Trans. R. Soc. 231A:147 (1932).Google Scholar
  3. 3.
    N. S. Osborne, H. F. Stimson, E. F. Fiock, and D. C. Ginnings, J. Res. NBS 10:155 (1933).Google Scholar
  4. 4.
    L. B. Smith, F. G. Keyes, and H. T. Gerry, Proc. Am. Acad. Arts Sci. 69:137 (1934).Google Scholar
  5. 5.
    H. F. Stimson, J. Res. NBS 73A:493 (1969).Google Scholar
  6. 6.
    D. R. Douslin, J. Chem. Thermodyn. 3:187 (1971).Google Scholar
  7. 7.
    L. Besley and G. A. Bottomley, J. Chem. Thermodyn. 5:397 (1973).Google Scholar
  8. 8.
    L. A. Guildner, D. P. Johnson, and F. E. Jones, J. Res. NBS 80A:505 (1976).Google Scholar
  9. 9.
    G. A. Bottomley, Aust. J. Chem. 31:1177 (1978).Google Scholar
  10. 10.
    E. B. Munday, J. C. Mullins, and D. D. Edie, J. Chem. Eng. Data 25:191 (1980).Google Scholar
  11. 11.
    Gy. Jákli and H. Illy, Vapour Pressure Isotope Effect of the Equimolar H2O-D2O Mixture, KFKI-1980-15 (Hung. Acad. Sci., Cent. Res. Inst. Phys., KFKI, 1980).Google Scholar
  12. 12.
    G. N. Lewis and R. T. MacDonald, J. Am. Chem. Soc. 55:3057 (1933).Google Scholar
  13. 13.
    F. T. Miles and A. W. C. Menzies, J. Am. Chem. Soc. 58:1067 (1936).Google Scholar
  14. 14.
    E. H. Riesenfeld and T. L. Chang, Z. Phys. Chem. 33B:120 (1936).Google Scholar
  15. 15.
    K. Niwa and E. Shimazaki, J. Chem. Soc. Jpn. (Nihon Kagakukaishi) 60:985 (1939) (Japanese).Google Scholar
  16. 16.
    R. L. Combs, J. M. Googin, and H. A. Smith, J. Phys. Chem. 58:1000 (1954).Google Scholar
  17. 17.
    G. D. Oliver and J. W. Grisard, J. Am. Chem. Soc. 78:561 (1956).Google Scholar
  18. 18.
    S. L. Rivkin and T. S. Akhundov, Teploen. 9(5):62 (1962).Google Scholar
  19. 19.
    I. Kiss, G. Jákly, and H. Illy, Acta Chim. Acad. Sci. Hung. 47:379 (1966).Google Scholar
  20. 20.
    K. Zieborak, Z. Phys. Chem. 231:248 (1966).Google Scholar
  21. 21.
    W. M. Jones, J. Chem. Phys. 48:207 (1968).Google Scholar
  22. 22.
    C. T. Liu and W. T. Lindsay, Jr., J. Chem. Eng. Data 15:510 (1970).Google Scholar
  23. 23.
    J. Pupezin, G. Jákly, G. Jancsó, and W. A. Van Hook, J. Phys. Chem. 76:743 (1972).Google Scholar
  24. 24.
    Gy. Jákli and W. A. Van Hook, J. Chem. Eng. Data 26:243 (1981).Google Scholar
  25. 25.
    J. M. H. Levelt Sengers, J. Straub, K. Watanabe, and P. G. Hill, J. Phys. Chem. Ref. Data 14:193 (1985).Google Scholar
  26. 26.
    M. M. Popov and F. I. Tazetdinov, Atom. Energ. 8:420 (1960).Google Scholar
  27. 27.
    N. Matsunaga and A. Nagashima, Ind. Eng. Chem. Fund. 25:115 (1986).Google Scholar
  28. 28.
    E. R. Smith and M. Wojciechowski, J. Res. NBS 17:841 (1936).Google Scholar
  29. 29.
    I. E. Puddington, Can. J. Res. 27B:1 (1949).Google Scholar
  30. 30.
    E. H. Riesenfeld and T. L. Chang, Z. Phys. Chem. 30B:61 (1935).Google Scholar
  31. 31.
    H. Eck, Phys. Z. 40:3 (1939).Google Scholar
  32. 32.
    I. Tanishita and A. Nagashima, Bull. JSME 11:1161 (1968).Google Scholar
  33. 33.
    J. H. Keenan, F. G. Keyes, P. G. Hill, and J. G. Moore, Steam Tables — Thermodynamic Properties of Water Including Vapor, Liquid, and Solid Phases (Wiley, New York, 1969).Google Scholar
  34. 34.
    D. Ambrose and I. J. Lawrenson, J. Chem. Thermodyn. 4:755 (1972).Google Scholar
  35. 35.
    W. Wagner, Method for rational establishment of thermodynamic equations shown by the example of the vapour pressure curve for pure fluids, Paper No. Z4, Meeting of the Commission B1, Int. Inst. Refrig. (1973).Google Scholar
  36. 36.
    I. Tanishita, K. Watanabe, M. Uematsu, and K. Eguchi, Evaluation and correlation of saturation pressure of light and heavy water, Paper No. VI-4, 8th Int. Conf. Prop. Steam (1974).Google Scholar
  37. 37.
    K. Watanabe and M. Uematsu, Nihon Kikai Gakkai Koen Rombunshu 740(16):103 (1974) (Japanese).Google Scholar
  38. 38.
    A. A. Aleksandrov and Z. A. Ershova, Inzh.-Fiz. Zh. 40(5):894 (1981).Google Scholar
  39. 39.
    A. Saul and W. Wagner, Correlation equations for the thermodynamic properties on the saturation line of ordinary water substance, Report to Working Group A, Int. Assoc. Prop. Steam (1985).Google Scholar
  40. 40.
    P. G. Hill and R. D. C. MacMillan, Ind. Eng. Chem. Fund. 18:412 (1979).Google Scholar
  41. 41.
    Release on the IAPS skeleton tables 1985 for the thermodynamic properties of ordinary water substance, Int. Assoc. Prop. Steam (1985).Google Scholar
  42. 42.
    R. C. Phutela and D. V. Fenby, Aust. J. Chem. 32:197 (1979).Google Scholar
  43. 43.
    R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids, 3rd ed. (McGraw-Hill, New York, 1977).Google Scholar
  44. 44.
    P. G. Hill and R. D. C. MacMillan, J. Phys. Chem. Ref. Data 9:735 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • N. Matsunaga
    • 1
  • A. Nagashima
    • 1
  1. 1.Department of Mechanical EngineeringKeio UniversityYokohamaJapan

Personalised recommendations