International Journal of Thermophysics

, Volume 12, Issue 2, pp 333–356 | Cite as

Cubic equations of state for transport properties

  • T. Heckenberger
  • K. Stephan


A method is presented for the prediction of the background contribution of residual thermal conductivities and residual viscosities of nonpolar or slightly polar substances. The method is based on the concept of transport equations of state describing the transport properties in terms of pressure and temperature by pressure explicit equations similar to thermal equations of state. The transport equation of state is derived from a generalized cubic thermal equation of state and a universal function for the density dependence of the residual part of the transport properties. A comparison of calculated and recommended values of the thermal conductivity of 35 and the viscosity of 23 substances yields an absolute average deviation of 6% for the thermal conductivity and of 5% for the viscosity. The Maxwell condition is applied to the generalized transport equation of state to predict consistently the transport properties along the vapor-liquid coexistence curve.

Key words

equation of state thermal conductivity transport equation of state viscosity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, 4th ed. (McGraw-Hill, New York, 1987).Google Scholar
  2. 2.
    G. Latini and C. Baroncini, High Temp.-High Press. 15:407 (1983).Google Scholar
  3. 3.
    T.-H. Chung, Ph.D. thesis (University of Oklahoma, Norman, 1980).Google Scholar
  4. 4.
    J. F. Ely and H. J. M. Hanley, Ind. Eng. Chem. Fundam. 22:90 (1983).Google Scholar
  5. 5.
    J. F. Ely and H. J. M. Hanley, Ind. Eng. Chem. Fundam. 20:323 (1981).Google Scholar
  6. 6.
    L. I. Stiel and G. Thodos, AIChE J. 10:26 (1964).Google Scholar
  7. 7.
    L. I. Stiel and G. Thodos, AIChE J. 10:59 (1964).Google Scholar
  8. 8.
    L. I. Stiel and G. Thodos, AIChE J. 7:611 (1961).Google Scholar
  9. 9.
    J. A. Jossi, L. I. Stiel, and G. Thodos, AIChE J. 8:59 (1962).Google Scholar
  10. 10.
    K. Stephan and T. Heckenberger, Thermal Conductivity and Viscosity Data of Fluid Mixtures (DECHEMA Chemistry Data Series, Vol. X, Part 1, Frankfurt, 1989).Google Scholar
  11. 11.
    T. Heckenberger, VDI-Fortschrittbericht Reihe 3 Nr. 206 (VDI, Düsseldorf, 1990).Google Scholar
  12. 12.
    A. Laesecke and K. Stephan, in Proc. 10th Int. Conf. Prop. Steam 1984, V. V. Sytchev, A. A. Aleksandrov, eds. (MIR, Moscow, 1986), pp. 398–414.Google Scholar
  13. 13.
    A. Laesecke, VDI-Fortschrittbericht Reihe 3 Nr. 117 (VDI, Düsseldorf, 1986).Google Scholar
  14. 14.
    K. Stephan, R. Krauss, and A. Laesecke, J. Phys. Chem. Ref. Data 16:993 (1987).Google Scholar
  15. 15.
    A. Laesecke, R. Krauss, K. Stephan, and W. Wagner, J. Phys. Chem. Ref. Data 19:1089 (1990).Google Scholar
  16. 16.
    T. Heckenberger and K. Stephan, Int. J. Thermophys. 11:1011 (1990).Google Scholar
  17. 17.
    J. V. Sengers, Int. J. Thermophys. 6:203 (1985).Google Scholar
  18. 18.
    J. C. Maxwell, J. Chem. Soc. 13:493 (1875).Google Scholar
  19. 19.
    K. Schreiner, VDI-Fortschrittbericht Reihe 3 Nr. 125 (VDI, Düsseldorf, 1986).Google Scholar
  20. 20.
    R. Krauss and K. Stephan, J. Phys. Chem. Ref. Data 18:43 (1989).Google Scholar
  21. 21.
    D. E. Diller, H. J. M. Hanley, and H. M. Roder, Cryogenics 10:286 (1970).Google Scholar
  22. 22.
    J. Millat, M. Ross, W. A. Wakeham, and M. Zalaf, Int. J. Thermophys. 9:481 (1988).Google Scholar
  23. 23.
    K. Stephan and T. Heckenberger, in Proc. XVIIth Int. Congr. Refr., Vol. B, Austrian Association of Refrigeration and Air Conditioning for the International Institute of Refrigeration, eds. (Wien, 1987), p. 1.Google Scholar
  24. 24.
    K. Stephan and K. Lucas, Viscosity of Dense Fluids (Plenum Press, New York, 1980).Google Scholar
  25. 25.
    K. Stephan, A. Laesecke, and R. Krauss, BMFT-Report NTS 2010 l (Bundesminister für Forschung und Technologie, Bonn, Germany, 1981).Google Scholar
  26. 26.
    A. Laesecke, K. Stephan, and R. Krauss, Int. J. Thermophys. 7:973 (1986).Google Scholar
  27. 27.
    K. S. Pitzer, D. Z. Lippmann, R. F. Curl Jr., C. M. Huggins, and D. E. Petersen, J. Am. Chem. Soc. 77:3433 (1955).Google Scholar
  28. 28.
    D. R. Schreiber and K. S. Pitzer, Int. J. Thermophys. 9:965 (1988).Google Scholar
  29. 29.
    K. Lucas, Wärme- u. Stoffübertragung 4:236 (1971).Google Scholar
  30. 30.
    L. Riedel, Chemie-Ing.-Techn. 26:83 (1954).Google Scholar
  31. 31.
    R. C. Reid and T. K. Sherwood, The Properties of Gases and Liquids, 2nd ed. (McGraw-Hill, New York, 1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • T. Heckenberger
    • 1
  • K. Stephan
    • 1
  1. 1.Institut für Technische Thermodynamik und Thermische VerfahrenstechnikUniversity of StuttgartStuttgart 80Germany

Personalised recommendations