The effects of various “nicotine-like” agents in the cat superior cervical ganglion in situ

  • W. Haefely


The effects of nicotine, lobeline, anabasine, cytisine, coniine, sparteine, piperidine, acetylcholine, tetramethylammonium (TMA) and dexamphet-amine, given as i.a. bolus injections, were studied in the cat superior cervical ganglion (SCG) in situ and compared with those of (DMPP) 1,1-dimethyl-4-phenylpiperazinium described in a preceding paper.

Two main events are thought to determine the ganglionic response to these agents. A non-selective conductance increase of the ganglion cells by stimulation of nicotinic receptors is responsible for depolarization, firing, facilitation of ganglionic transmission and depolarization block. The accumulation of Na+ resulting from the altered conductance activates an electrogenic Na+-pump which tends to increase the membrane potential and causes a delayed unspecific depression of ganglionic excitability. After agents with a brief agonistic action (acetylcholine, DMPP, TMA), the two mechanisms lead to a distinct biphasic effect on ganglionic polarity (initial depolarization, later hyperpolarization) and transmission (early and later block); with the nicotinic agonists of long duration of action the effect of the electrogenic Na+-pump was obscured by the long-lasting activation of nicotinic receptors and was usually revealed only by special pharmacological procedures. An additional preganglionic depression of transmitter release is very likely. A desensitization of nicotinic receptors occurred after high single or repeated doses of nicotine, resulting in a selective unsurmountable block. A competitive block of nicotinic receptors occurred after coniine. Local anaesthetic properties of lobeline and dexamphetamine interfered with the two main events when high doses were given. The only effect of sparteine was to produce a short-lasting hexamethonium-like block of transmission.

Key words

Sympathetic Ganglion Nicotine Nicotine-Like Agents Acetylcholine Lobeline 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Applegren, L.-E., Hansson, E., Schmiterlöw, C. G.: Localization of radioactivity in the superior cervical ganglion of cats following injection of 14C-labelled nicotine. Acta physiol. scand. 59, 330–336 (1963)Google Scholar
  2. Brown, D. A.: Depolarization of normal and preganglionically denervated superior cervical ganglia by stimulant drugs. Brit. J. Pharmacol. 26, 511–520 (1966a)Google Scholar
  3. Brown, D. A.: Effects of hexamethonium and hyoscine on the drug-induced depolarization of isolated superior cervical ganglia. Brit. J. Pharmacol. 26, 521–537 (1966b)Google Scholar
  4. Brown, D. A.: Electrical responses of cat superior cervical ganglia in vivo to some stimulant drugs and their modification by hexamethonium and hyoscine. Brit. J. Pharmacol. 26, 538–551 (1966c)Google Scholar
  5. Brown, D. A., Halliwell, J. V., Scholfield, C. N.: Uptake of nicotine and extracellular space markers by isolated rat ganglia in relation to receptor activation. Brit. J. Pharmacol. 42, 100–113 (1971)Google Scholar
  6. Brown, D. A., Hoffmann, P. C., Roth, L. J.: 3H-nicotine in cat superior cervical and nodose ganglia after close-arterial injection in vivo. Brit. J. Pharmacol. 35, 406–417 (1969)Google Scholar
  7. Brown, D. A., Scholfield, C. N.: Potentials in isolated rat superior cervical ganglia produced by nicotine. Brit. J. Pharmacol. 40, 559P-561P (1970)Google Scholar
  8. Brown, D. A., Scholfield, C. N.: Nicotine washout rates from isolated rat ganglia in relation to recovery from nicotine depolarization. Brit. J. Pharmacol. 45, 29–36 (1972)Google Scholar
  9. Dunant, Y.: Some properties of the presynaptic nerve terminals in a mammalian sympathetic ganglion. J. Physiol. (Lond.) 221, 577–587 (1972)Google Scholar
  10. Eccles, R. M.: The effect of nicotine on synaptic transmission in the sympathetic ganglion. J. Pharmacol. exp. Ther. 118, 26–38 (1956)Google Scholar
  11. Gebber, G. L.: Dissociation of depolarization and ganglionic blockade induced by nicotine. J. Pharmacol. exp. Ther. 160, 124–134 (1968)Google Scholar
  12. Gebber, G. L., Volle, R. L.: Mechanisms involved in ganglionic blockade induced by tetramethylammonium. J. Pharmacol. exp. Ther. 152, 18–28 (1966)Google Scholar
  13. Haefely, W.: The effects of 1,1-dimethyl-4-phenyl-piperazinium (DMPP) in the cat superior cervical ganglion. Naunyn-Schmiedeberg's Arch. Pharmacol. 281, 57–91 (1974a)Google Scholar
  14. Haefely, W.: Muscarinic postsynaptic events in the cat superior cervical ganglion in situ. Naunyn-Schmiedeberg's Arch. Pharmacol. 281, 119–143 (1974b)Google Scholar
  15. Haefely, W., Hürlimann, A., Thoenen, H.: Wirkungen von Nikotin, DMPP, TMA, Amphetamin and KCl auf das Demarkationspotential des Ganglion cervicale superius und die ganglionäre Transmission. Helv. physiol. pharmacol. Acta 25, CR418-CR419 (1967)Google Scholar
  16. Haefely, W., Stähelin, H., Thoenen, H.: Pharmakologische Rezeptoren für sympathomimetische Amine an der sympathischen Ganglienzelle und deren peripheren Nervenendigungen. Helv. physiol. pharmacol. Acta 24, C90-C92 (1966)Google Scholar
  17. Hancock, C., Volle, R. L.: Enhancement by cesium ions of ganglionic hyperpolarization induced by dimethylphenylpiperazinium (DMPP) and repetitive preganglionic stimulation. J. Pharmacol. exp. Ther. 169, 201–210 (1969)Google Scholar
  18. Holman, M. E., Muir, T. C., Szurszewski, J. H., Yonemura, K.: Effect of iontophoretic application of cholinergic agonists to guinea-pig pelvic ganglia. Brit. J. Pharmacol. 41, 26–40 (1971)Google Scholar
  19. Jaramillo, J., Volle, R. L.: A comparison of the ganglionic stimulating and blocking properties of some nicotinic drugs. Arch. int. Pharmacodyn. 174, 88–97 (1968)Google Scholar
  20. Kharkevich, D. A.: Ganglion-blocking and ganglion-stimulating agents. Oxford: Pergamon Press 1967Google Scholar
  21. Koketsu, K.: Cholinergic synaptic potentials and the underlying ionic mechanisms. Fed. Proc. 28, 101–112 (1969)Google Scholar
  22. Koketsu, K., Nishi, S.: Acetylcholine depolarization of bullfrog sympathetic preganglionic nerve terminals. Life Sci. 6, 1169–1177 (1967)Google Scholar
  23. Kosterlitz, H. W., Lees, G. M., Wallis, D. I.: Further evidence for an electrogenic sodium pump in a mammalian sympathetic ganglion. Brit. J. Pharmacol. 38, 464P-465P (1970)Google Scholar
  24. Luco, J. V., Martorell, R., Reid, A.: Effect of amphetamine on the synaptic transmission of sympathetic ganglia and spinal cord. J. Pharmacol. exp. Ther. 97, 171–176 (1949)Google Scholar
  25. Lundberg, A., Thesleff, S.: Dual action of nicotine on the sympathetic ganglion of the cat. Acta physiol. scand. 28, 218–223 (1953)Google Scholar
  26. Machová, J., Boška, D.: The effect of 5-hydroxytryptamine, dimethylphenylpiperazinium and acetylcholine on transmission and surface potential in the cat sympathetic ganglion. Europ. J. Pharmacol. 7, 152–158 (1969)Google Scholar
  27. Pascoe, J. E.: The effect of acetylcholine and other drugs on the isolated superior cervical ganglion. J. Physiol. (Lond.) 132, 242–255 (1956)Google Scholar
  28. Paton, W. D. M., Perry, W. L. M.: The relationship between depolarization and block in the cat's superior cervical ganglion. J. Physiol. (Lond.) 119, 43–57 (1953)Google Scholar
  29. Reinert, H.: Zum Wirkungsmechanismus der Amphetamine. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 232, 327–328 (1957)Google Scholar
  30. Reinert, H.: The effect of amphetamines on peripheral synaptic structures. In: Bradley, Deniker and Radouco-Thomas: Neuropsychopharmacology, pp. 399 to 404. Amsterdam: Elsevier 1959Google Scholar
  31. Reinert, H.: The depolarizing and blocking action of amphetamine in the cat's superior cervical ganglion. In: Vane, Wolstenholme and O'Connor (eds.): Adrenergic mechanisms. Ciba Foundation Symposium, pp. 373–379. London: Churchill Ltd. 1960Google Scholar
  32. Schaffner, R.: Morphologie, Elektrophysiologie und Pharmakologie des Ganglion ciliare der Katze. Ph. D. Thesis, University of Basel 1973Google Scholar
  33. Thoenen, H., Hürlimann, A., Haefely, W.: Mechanism of amphetamine accumulation in the isolated perfused heart of the rat. J. Pharm. Pharmacol. 20, 1–11 (1968)Google Scholar
  34. Trendelenburg, U.: Reaktion sympathischer Ganglien während der Ganglienblockade durch Nicotin. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 230, 448–456 (1957)Google Scholar
  35. Trendelenburg, U.: Transmission of preganglionic impulses through the muscarinic receptors of the superior cervical ganglion of the cat. J. Pharmacol. exp. Ther. 154, 426–440 (1966)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • W. Haefely
    • 1
  1. 1.Abteilung für Experimentelle MedizinF. Hoffmann-La Roche & Co. AG.BaselSchweiz

Personalised recommendations