Skip to main content
Log in

Adrenoceptors and salt and water movement in epithelia

  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Summary

The effects of adrenergic nerve stimulation and catecholamines administered in vitro and in vivo on passive water and active and passive salt movement across epithelia have been reviewed. In general, where catecholamines affect these movements decreases are mediated by α- and increases by β-adrenoceptors. However, some species and considerable tissue differences in the responses which can be ellicited are evident. Thus:

  1. 1.

    α-Adrenoceptor activation antagonises drugs which increase water movement across amphibian skin and bladder without, in the latter, modifying the resting permeability.

  2. 2.

    In amphibian skins and in fish gills β-adrenoceptors mediate the increase in resting water flux caused by low concentrations of catecholamines.

  3. 3.

    β-Adrenoceptors mediate an increase in permeability with salt efflux and a stimulation of mucus secretion in amphibian skin.

  4. 4.

    α-Adrenoceptors mediate a reduction in Na+ movement across amphibian skin and fish gill respiratory epithelium; however adrenaline has little action on Na+ permeability of amphibian bladder.

  5. 5.

    β2-Adrenoceptors mediate the increased Na+ permeability caused by low concentrations of catecholamines.

The localisation of the mechanisms responsible for these actions and their possible physiological significance is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambalavanar, S.: Actions and interactions of drugs affecting transport processes in frog skin and toad bladder. M. Sc. Thesis, Manchester 1971.

  • Ambalavanar, S., Foster, R. W., Schnieden, H.: Effects of sympathomimetics on water movement across toad isolated bladder. J. Pharm. Pharmacol. 24, 501–502 (1972)

    Google Scholar 

  • Ambalavanar, S., Foster, R. W., Schnieden, H.: The adrenoceptors mediating catecholamine effects in frog isolated skin. J. Pharm. Pharmacol. 25, 55–59 (1973)

    Google Scholar 

  • Andersen, B., Ussing, H. H.: Solvent drag on non-electrolytes during osmotic flow through isolated toad skin and its response to antidiuretic hormone. Acta physiol. scand. 39, 228–239 (1957)

    Google Scholar 

  • Bastide, F., Jard, S.: Actions de la noradrénaline et de l'ocytocine sur le transport actif de sodium et la perméabilité à l'eau de la peau de grenouille. Rôle du 3′,5′-AMP cyclique. Biochim. biophys. Acta (Amst.) 150, 113–123 (1968)

    Google Scholar 

  • Falck, B., Häggendal, J., Owman, C.: The localisation of adrenaline in adrenergic nerves in the frog. Quart. J. Physiol. 48, 253–257 (1963)

    Google Scholar 

  • Fassina, G., Carpenedo, F., Fiandine, G.: The effects of catecholamines and β-antiadrenergic drugs on isolated short-circuited skin of the frog. J. Pharm. Pharmacol. 20, 240–242 (1968)

    Google Scholar 

  • Friedman, R. T., La Prade, N. S., Aiyawar, R. M., Huf, E. G.: Chemical basis for the [H+] gradient across frog skin. Amer. J. Physiol. 212, 962–972 (1967)

    Google Scholar 

  • Gonzales, C., Sanchez, J., Concha, J.: Changes in potential difference and shortcircuit current produced by electrical stimulation in a nerve-skin preparation of the toad. Biochim. biophys. Acta (Amst.) 120, 186–188 (1966)

    Google Scholar 

  • Gonzales, C., Sanchez, J., Concha, J.: Further evidence for the release of noradrenalin under nerve stimulation and its effects on the potential difference in toad nerve-skin preparations. Biochim. biophys. Acta (Amst.) 135, 167–170 (1967)

    Google Scholar 

  • Handler, J. S., Bensinger, R., Orloff, J.: Effects of adrenergic agents on toad bladder response to ADH, 3′,5′-AMP and theophylline. Amer. J. Physiol. 215, 1024–1031 (1968)

    Google Scholar 

  • House, C. R.: The role of glandular activity in the electrical response of amphibian skin to noradrenaline. J. Physiol. (Lond.) 202, 631–644 (1969)

    Google Scholar 

  • House, C. R.: The effect of noradrenaline on the toad skin potential. J. Physiol. (Lond.) 209, 513–539 (1970)

    Google Scholar 

  • Jard, S., Bastide, F., Morel, F.: Analyse de la relation “dose-effect biologique” pour l'action de l'ocytocine et de la noradrénaline sur le peau et la vessie de la grenouille. Biochim. biophys. Acta (Amst.) 150, 124–130 (1968)

    Google Scholar 

  • Kirschner, L. B.: Ventral aortic pressure and sodium fluxes in perfused eel gills. Amer. J. Physiol. 217, 596–604 (1969)

    Google Scholar 

  • Koefoed-Johnsen, V., Levi, H., Ussing, H. H.: The mode of passage of chloride ions through the isolated frog skin. Acta physiol. scand. 25, 150–163 (1952)

    Google Scholar 

  • Koefoed-Johnsen, V., Ussing, H. H.: The contributions of diffusion and flow to the passage of D2O through living membranes. Acta physiol. scand. 28, 60–76 (1953)

    Google Scholar 

  • Koefoed-Johnsen, V., Ussing, H. H., Zerahn, K.: The origin of the short-circuit current in the adrenaline stimulated frog skin. Acta physiol. scand. 27, 38–48 (1953)

    Google Scholar 

  • Leaf, A., Anderson, J., Page, L. B.: Active sodium transport by the isolated toad bladder. J. gen. Physiol. 41, 657–668 (1958)

    Google Scholar 

  • Leaf, A., Hays, R. M.: Permeability of the isolated toad bladder to solutes and its modification by vasopressin. J. gen. Physiol. 45, 921–932 (1962)

    Google Scholar 

  • Lindley, B. D.: Nerve stimulation and electrical properties of frog skin. J. gen. Physiol. 53, 427–449 (1969)

    Google Scholar 

  • Marcelin-Plaisance, J., Concha-Barahona, J.: Action comparée de l'adrénaline et de la noradrénaline sur la différence de potentiel et le courant de court-circuit au niveau de la peau de Crepaud isolée. J. Physiol. (Paris) 55, 425–432 (1963)

    Google Scholar 

  • Martin, D. W., Curran, P. F.: Reversed potentials in isolated frog skin. II. Active transport of chloride. J. Cell Physiol. 67, 367–372 (1966)

    Google Scholar 

  • McAfee, R. D.: The action of beta adrenergic site stimulating catecholamines on isolated frog skin. Biochim. biophys. Acta (Amst.) 203, 104–110 (1970)

    Google Scholar 

  • Pic, P., Mayer-Gostan, N., Maetz, J.: Sea-water teleosts: presence of α and β adrenergic receptors in the gill regulating salt extrusion and water permeability. Proc. 1st Int. Congr. on Comparative Physiology, Acquasparta (Italy), Sept. 1972. Amsterdam-London: North Holland Publ. Co. 1972

    Google Scholar 

  • Rajerison, R. M., Montegut, M., Jard, S., Morel, F.: The isolated frog skin epithelium: presence of α and β adrenergic receptors regulating active sodium transport and water permeability. Pflügers Arch. 332, 313–331 (1972)

    Google Scholar 

  • Randall, D. J., Baumgarten, D., Malyusz, M.: The relationship between gas and ion transfer across the gills of fishes. Comp. Biochem. Physiol. 41A, 629–637 (1972)

    Google Scholar 

  • Richards, B. D., Fromm, P. O.: Sodium uptake by isolated-perfused gills of rainbow trout (Salmo gairdneri). Comp. Biochem. Physiol. 33, 303–310 (1970)

    Google Scholar 

  • Van Rossum, J. M.: Different types of sympathomimetic α-receptors. J. Pharm. Pharmacol. 17, 202–216 (1965)

    Google Scholar 

  • Schoffeniels, E., Salee, M.-L.: The effects of the electrical stimulation of the brachial plexus on the potential difference of frog skin. Comp. Biochem. Physiol. 14, 587–602 (1965)

    Google Scholar 

  • Seldin, J. P., Hoshiko, T.: Ionic requirements for epinephrine stimulation of frog skin gland secretion. J. exp. Zool. 163, 111–114 (1966)

    Google Scholar 

  • Ussing, H. H.: The active ion transport through the isolated frog skin in the light of tracer studies. Acta physiol. scand. 17, 1–37 (1949)

    Google Scholar 

  • Ussing, H. H., Zerahn, K.: Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta physiol. scand. 23, 110–127 (1951)

    Google Scholar 

  • Watlington, C. O.: The nature of adrenergic influence on sodium transport in frog skin. J. clin. Invest. 44, 1108 (1965)

    Google Scholar 

  • Watlington, C. O.: Alpha and beta adrenergic stimulation and sodium transport across frog skin. Clin. Res. 15, 52 (1967)

    Google Scholar 

  • Watlington, C. O.: Effects of catecholamines and adrenergic blockade on sodium transport of isolated frog skin. Amer. J. Physiol. 214, 1001–1007 (1968a)

    Google Scholar 

  • Watlington, C. O.: Effect of adrenergic stimulation on ion transport across skin of living frogs. Comp. Biochem. Physiol. 24, 965–974 (1968b)

    Google Scholar 

  • Watlington, C. O.: α-Adrenergic inhibition of Na+ transport: the interaction of vasopressin and 3′,5′-AMP. Biochim. biophys. Acta (Amst.) 193, 394–402 (1969)

    Google Scholar 

  • Watlington, C. O., Burke, P. K., Campbell, A. D. Huf, E. G.: Systemic effects of epinephrine in the frog. J. cell comp. Physiol. 65, 337–354 (1965)

    Google Scholar 

  • Watlington, C. O., Campbell, A. D., Huf, E. G.: Ion transport in skin of live frogs. J. cell. comp. Physiol. 64, 389–408 (1964)

    Google Scholar 

  • Watlington, C. O., Spath, J. A., Berry, E. R., Huf, E. G.: Secretory responses of frog skin to chemical stimulation. Fed. Proc. 27, 233 (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foster, R.W. Adrenoceptors and salt and water movement in epithelia. Naunyn-Schmiedeberg's Arch. Pharmacol. 281, 315–326 (1974). https://doi.org/10.1007/BF00500600

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00500600

Key words

Navigation