Advertisement

International Journal of Thermophysics

, Volume 10, Issue 6, pp 1165–1179 | Cite as

The use of a novel capillary flow viscometer for the study of the argon/carbon dioxide system

  • A. Hobley
  • G. P. Matthews
  • A. Townsend
Article

Abstract

A novel capillary flow viscometer has been constructed which is ultimately intended to be used for the measurement of the viscosities of corrosive gases such as hydrogen chloride up to pressures of 0.1 MPa. In the process of checking the accuracy of the instrument, we have measured the viscosities of carbon dioxide and argon/carbon dioxide mixtures relative to standard argon viscosities in the temperature range 301 to 521 K. The carbon dioxide viscosities have previously been used to determine a “viscosity average” well depth for the gas, which is an essential parameter for the Chapman-Enskog analysis of the argon/carbon dioxide mixture viscosities as described here. The argon/carbon dioxide interaction viscosities which result from this analysis are compared to corresponding values calculated from the mixture viscosities of Kestin and Ro, and to Mason-Monchick calculations performed by Maitland et al., using the potential energy surface of Pack et al. The interaction viscosities are also used to calculate diffusion coefficients, which are compared to Mason-Monchick diffusion coefficients of Maitland et al. and to diffusion coefficients calculated from the mixture viscosities of Kestin and Ro. An inverted isotropic potential is used to calculate second virial coefficients, which are compared with experiment and with calculations based on the potential energy surface of Hough and Howard and of Parker et al.

Key words

carbon dioxide diffusion gas mixtures inversion potential function virial coefficients 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham, Intermolecular Forces (Clarendon Press, Oxford, 1981), Chaps. 5, 6, and 9.Google Scholar
  2. 2.
    J. Kestin and S. T. Ro, Ber. Buns.-Gesell. 78:20 (1974).Google Scholar
  3. 3.
    J. Kestin and S. T. Ro, Ber. Bunsen.-Gesell. 80:619 (1976).Google Scholar
  4. 4.
    G. A. Parker, R. L. Snow, and R. T. Pack, J. Chem. Phys. 64:1668 (1976).Google Scholar
  5. 5.
    R. K. Preston and R. T. Pack, J. Chem. Phys. 66:2480 (1977).Google Scholar
  6. 6.
    G. A. Parker and R. T. Pack, J. Chem. Phys. 68:1585 (1978).Google Scholar
  7. 7.
    R. T. Pack, Chem. Phys. Lett. 55:197 (1978).Google Scholar
  8. 8.
    G. C. Maitland, M. Mustafa, V. Vesovic, and W. A. Wakeham, Mol. Phys. 57:1015 (1986).Google Scholar
  9. 9.
    A. M. Hough and B. J. Howard, J. Chem. Soc. Faraday Trans. 2 83:173 (1987).Google Scholar
  10. 10.
    A. M. Hough and B. J. Howard, J. Chem. Soc. Faraday Trans. 2 83:191 (1987).Google Scholar
  11. 11.
    J. M. Hutson and B. J. Howard, Mol. Phys. 45:769 (1982).Google Scholar
  12. 12.
    J. M. Hutson, J. Chem. Phys. 81:2357 (1984).Google Scholar
  13. 13.
    B. J. Howard and A. S. Pine, Chem. Phys. Lett. 122:1 (1985).Google Scholar
  14. 14.
    J. M. Hutson, J. Chem. Soc. Faraday Trans. 2 82:1163 (1986).Google Scholar
  15. 15.
    L. Delauney, G. P. Matthews, and A. Townsend, J. Phys. E Sci. Instrum. 21:890 (1988).Google Scholar
  16. 16.
    G. P. Matthews and A. Townsend, Chem. Phys. Lett. 155:518 (1989).Google Scholar
  17. 17.
    G. C. Maitland, V. Vesovic, and W. A. Wakeham, Mol. Phys. 54:287 (1985).Google Scholar
  18. 18.
    G. C. Maitland and E. B. Smith, J. Chem. Eng. Data 17:150 (1972).Google Scholar
  19. 19.
    J. O. Hirschfelder, M. H. Taylor, T. Kihara, and R. Rutherford, Phys. Fluids 4:663 (1961).Google Scholar
  20. 20.
    G. C. Maitland and E. B. Smith, Mol. Phys. 22:861 (1971).Google Scholar
  21. 21.
    B. E. Fender and G. D. Halsay, Jr., J. Chem. Phys. 36:1881 (1962).Google Scholar
  22. 22.
    J. H. Dymond and E. B. Smith, The Virial Coefficients of Pure Gases and Mixtures (Clarendon Press, Oxford, 1980), pp. 260–261.Google Scholar
  23. 23.
    T. L. Cotterell, R. A. Hamilton, and R. P. Taubinger, Trans. Faraday Soc. 52:1310 (1956).Google Scholar
  24. 24.
    R. N. Lichtenthaler and K. Schafer, Ber. Bunsenges. Phys. Chem. 73:42 (1969).Google Scholar
  25. 25.
    B. Schramm and R. Gehrmann, Unpublished, as reported in Ref. 22 (1979).Google Scholar
  26. 26.
    B. Schramm and H. Schmiedel, Unpublished, as reported in Ref. 22 (1979).Google Scholar
  27. 27.
    E. B. Smith and A. R. Tindell, Faraday Disc. Chem. Soc. 73:221 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • A. Hobley
    • 1
  • G. P. Matthews
    • 1
  • A. Townsend
    • 1
  1. 1.Chemistry Division, Department of Environmental SciencesPlymouth PolytechnicPlymouthUK

Personalised recommendations