International Journal of Thermophysics

, Volume 11, Issue 6, pp 1099–1110 | Cite as

Effects of infrared detector nonlinearity on thermal diffusivity measurements using the flash method

  • J. J. Hoefler
  • R. E. Taylor


When using an infrared detector to measure temperature changes as in the case of the flash technique, the effects of detector nonlinearity can have drastic effects on the experimental data. In the flash technique, the detector nonlinearity tends to shift the calculated half-time to larger values, resulting in underpredicted values of thermal diffusivity especially in experiments performed at room temperature. In order to predict the error in the diffusivity calculation, the nonlinear relationship between the detector signal and the temperature change was developed into a Taylor series expansion used in the flash technique's mathematical model. The nonlinear detector model proves to yield accurate correction factors for the presently calculated values of diffusivity. In order to utilize the model, it is necessary to estimate the maximum temperature rise of the back surface and the degree of detector nonlinearity.

Key words

detector nonlinearity flash technique infrared detector thermal diffusivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, J. Appl. Phys. 32:1679 (1961).Google Scholar
  2. 2.
    R. E. Taylor and K. D. Maglić, in Compendium of Thermophysical Property Measurement Methods, Vol. I, K. D. Maglić, A. Cezairliyan, and V. E. Peletsky, eds. (Plenum Press, New York, 1984), pp. 305–336.Google Scholar
  3. 3.
    L. M. Clark III and R. E. Taylor, J. Appl. Phys. 46:4584 (1975).Google Scholar
  4. 4.
    R. C. Heckman, J. Appl. Phys. 44:1455 (1973).Google Scholar
  5. 6.
    M. G. Dreyfus, Appl. Opt. 2(11):1113 (1963).Google Scholar
  6. 5.
    R. E. Taylor and L. M. Clark III, High Temp. High Press. 6:65 (1974).Google Scholar
  7. 7.
    R. E. Taylor, H. Groot, and R. L. Shoemaker, in 17 Biennial Conference on Carbon, University of Kentucky, Lexington (1985).Google Scholar
  8. 8.
    R. E. Taylor, in Thermal Conductivity, Vol. 19, D. W. Yarbrough, ed. (Plenum Press, New York, 1988), pp. 407–409.Google Scholar
  9. 9.
    D. P. H. Hasselman and K. Y. Donaldson, Int. J. Thermophys. (in press).Google Scholar
  10. 10.
    D. P. H. Hasselman and G. Mekel, J. Am. Ceram. Soc. 72:967 (1989).Google Scholar
  11. 11.
    R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer (McGraw-Hill, New York, 1981), Chaps. 2 and 13.Google Scholar
  12. 12.
    J. J. Hoefler, M.S.M.E. thesis (Purdue University, West Lafayette, Ind., Dec. 1989), Chap. 2, App. B.Google Scholar
  13. 13.
    P. Cielo, J. Appl. Phys. 56:230 (1984).Google Scholar
  14. 14.
    H. Groot, in Thermal Conductivity, Vol. 20, D. P. H. Hasselman and J. R. Thomas, Jr., eds. (Plenum Press, New York, 1989), pp. 361–363.Google Scholar
  15. 15.
    G. C. Wei and J. M. Robbins, Bull. Am. Ceram. Soc. 64:691 (1985).Google Scholar
  16. 16.
    W. D. Lawson and J. W. Sabey, in Research Techniques in Nondestructive Testing, Vol. I, R. S. Sharpe, ed. (Academic Press, New York, 1970), pp. 443–454.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • J. J. Hoefler
    • 1
  • R. E. Taylor
    • 1
  1. 1.Thermophysical Properties Research LaboratoryPurdue UniversityWest LafayetteUSA

Personalised recommendations