International Journal of Thermophysics

, Volume 11, Issue 6, pp 1059–1073 | Cite as

Thermodynamic properties of 2,2,4-trimethylpentane

  • R. Malhotra
  • L. A. Woolf
Article

Abstract

p, V, T data for 2,2,4-trimethylpentane (TMP) have been obtained in the form of volume ratios for six temperatures in the range 278.15 to 338.15 K for pressures up to 280 MPa. Isothermal compressibilities, isobaric expansivities, and internal pressures have been evaluated from the volumetric data. There are strong indications that the combination of the present results with literature data at 348 and 373 K enable accurate extrapolations in the liquid range up to 473 K, and possibly to as low as 170 K, for pressures up to 980 MPa; use of only the present results with the requirement that the B coefficient of the Tait equation should become equal to the negative of the critical pressure at the critical temperature provides interpolations and extrapolations of comparable accuracy. It is suggested that 2,2,4-trimethylpentane is a suitable secondary reference material (because of its large liquid range at atmospheric pressure and the similarity of its volumetric properties to a wide range of fluids) for calibration of measuring cells used for determining volumes of fluids under pressure.

Key words

compressibility high pressure p, V, T data reference material Tait equation of state 2,2,4-trimethylpentane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. S. Kell and E. Whalley, J. Chem. Phys. 62:3496 (1975).Google Scholar
  2. 2.
    I. Brown and J. E. Lane, Pure and Applied Chem. 45:1 (1976).Google Scholar
  3. 3.
    C. A. Nieto de Castro and W. A. Wakeham, in Thermal Conductivity 18, T. Ashworth and D. R. Smith, eds. (Plenum Press, New York, 1985), pp. 65–75.Google Scholar
  4. 4.
    H. Baver and G. Meerlender, Rheol. Acta 23:514 (1984).Google Scholar
  5. 5.
    L. Soccorsi, G. Milazzo, and S. Caroli, Can. J. Spectrosc. 30:100 (1985).Google Scholar
  6. 6.
    J. H. Dymond, J. D. Isdale, and N. F. Glen, Fluid Phase Equil. 20:305 (1985).Google Scholar
  7. 7.
    P. W. Bridgman, Proc. Amer. Acad. Arts Sci. 67:1 (1932).Google Scholar
  8. 8.
    P. J. Back, A. J. Easteal, R. L. Hurle, and L. A. Woolf, J. Phys. E. Sci. Instrum. 15:360 (1982).Google Scholar
  9. 9.
    A. J. Easteal and L. A. Woolf, J. Chem. Thermodyn. 17:49 (1985).Google Scholar
  10. 10.
    A. J. Easteal and L. A. Woolf, J. Chem. Thermodyn. 14:755 (1982).Google Scholar
  11. 11.
    R. Malhotra and L. A. Woolf (to be published).Google Scholar
  12. 12.
    American Petroleum Institute Research Project 44, Thermodynamics Research Centre, College Station, Texas A&M University (1954).Google Scholar
  13. 13.
    K. Malakondaiah and S. V. Subrahmanyam, Acustica 65:104 (1988).Google Scholar
  14. 14.
    A. T. J. Hayward, Br. J. Appl. Phys. 18:965 (1967).Google Scholar
  15. 15.
    J. H. Dymond, R. Malhotra, J. D. Isdale, and N. F. Glen, J. Chem. Thermodyn. 8:603 (1988).Google Scholar
  16. 16.
    N. F. Glen, Ph.D. thesis (University of Glasgow, Scotland, 1985).Google Scholar
  17. 17.
    J. H. Dymond and R. Malhotra, Int. J. Thermophys. 9:941 (1988).Google Scholar
  18. 18.
    R. E. Gibson and O. H. Loeffler, J. Am. Chem. Soc. 63:2287 (1941).Google Scholar
  19. 19.
    W. G. Cutler, R. H. McMickle, R. H. Webb, and R. W. Schiessler, J. Chem. Phys. 29:727 (1958).Google Scholar
  20. 20.
    R. Malhotra, W. E. Price, L. A. Woolf, and A. J. Easteal, Int. J. Thermophys. 11:835 (1990).Google Scholar
  21. 21.
    J. H. Dymond and R. Malhotra, Int. J. Thermophys. 8:541 (1987).Google Scholar
  22. 22.
    V. Tekac, I. Cibulka, and R. Holub, Fluid Phase Equil. 19:33 (1985).Google Scholar
  23. 23.
    W. A. Felsing and G. M. Watson, J. Am. Chem. Soc. 65:780 (1943).Google Scholar
  24. 24.
    R. Ginell, J. Chem. Phys. 35:1776 (1961).Google Scholar
  25. 25.
    R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, 4th ed. (McGraw-Hill, New York, 1987).Google Scholar
  26. 26.
    M. J. P. Muringer, N. J. Trappeniers, and S. N. Biswas, Phys. Chem. Liq. 14:273 (1985).Google Scholar
  27. 27.
    A. J. Easteal and L. A. Woolf, Int. J. Thermophys. 6:331 (1985).Google Scholar
  28. 28.
    H. E. Eduljee, D. M. Newitt, and K. E. Weale, J. Chem. Soc. (London) 3086 (1951).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • R. Malhotra
    • 1
  • L. A. Woolf
    • 1
  1. 1.Atomic and Molecular Physics Laboratories, Research School of Physical SciencesThe Australian National UniversityCanberraAustralia

Personalised recommendations