International Journal of Thermophysics

, Volume 11, Issue 6, pp 1011–1023 | Cite as

Cubic equations of state for transport properties: An equation for the thermal conductivity of oxygen

  • T. Heckenberger
  • K. Stephan
Article

Abstract

A scheme for the development of equations for the transport properties in terms of pressure and temperature, so-called transport equations of state, is presented. The surfaces of transport properties and density as a function of pressure and temperature reveal similarities, which become even more evident when the residual transport property as a function of pressure and temperature is considered. Even the spinodals of transport and thermal properties coincide in the p, T plane, as can be shown mathematically and as was already empirically found for water and oxygen. Based on these similarities a cubic transport equation of state is evaluated for the residual thermal conductivity of oxygen. The new equation is only a little less accurate than the already established virial transport equation of state for oxygen. It is, however, much simpler and needs only a few parameters. The accuracy is still good enough for practical applications. The results demonstrate that cubic equations of state can describe transport properties and are a basis for generalized estimation methods for the transport properties of fluids.

Key words

equation of state (cubic) oxygen thermal conductivity transport equation of state 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Laesecke and K. Stephan, Proc. 10th Int. Conf. Prop. Steam 1984 (MIR, Moscow, 1986), pp. 398–414.Google Scholar
  2. 2.
    A. Laesecke, K. Stephan, and R. Krauss, Int. J. Thermophys. 7:973 (1986).Google Scholar
  3. 3.
    A. Laesecke, VDI-Fortschrittbericht Reihe 3, No. 117 (VDI, Düsseldorf, 1986).Google Scholar
  4. 4.
    K. Stephan, R. Krauss, and A. Laesecke, J. Phys. Chem. Ref. Data 16:993 (1987).Google Scholar
  5. 5.
    E. Bender, Cryogenics 15:667 (1975).Google Scholar
  6. 6.
    J. V. Sengers, Int. J. Thermophys. 6:203 (1985).Google Scholar
  7. 7.
    K. Lucas and K. Stephan, Chemie-Ingenieur-Technik. 45:265 (1973).Google Scholar
  8. 8.
    D. E. Diller, H. J. M. Hanley, and H. M. Roder, Cryogenics 10:286 (1970).Google Scholar
  9. 9.
    J. Millat, M. Ross, W. A. Wakeham, and M. Zalaf, Int. J. Thermophys. 9:481 (1988).Google Scholar
  10. 10.
    L. I. Stiel and G. Thodos, AIChE J. 10:26 (1964).Google Scholar
  11. 11.
    J. J. Martin, Ind. Eng. Chem. Fundam. 18:81 (1979).Google Scholar
  12. 12.
    F. G. Keyes, Trans. ASME 77:1395 (1955).Google Scholar
  13. 13.
    Z. A. Ivanova, N. V. Tsederberg, and V. N. Popov, Therm. Eng. 14:98 (1967).Google Scholar
  14. 14.
    H. M. Roder, J. Res. Natl. Bur. Stl. 87:279 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • T. Heckenberger
    • 1
  • K. Stephan
    • 1
  1. 1.Institut für Technische Thermodynamik und Thermische VerfahrenstechnikUniversity of StuttgartStuttgart 80Federal Republic of Germany

Personalised recommendations