Advertisement

International Journal of Thermophysics

, Volume 6, Issue 6, pp 585–593 | Cite as

Microscopic studies of fluids in pores: Computer simulation and mean-field theory

  • B. K. Peterson
  • J. P. R. B. Walton
  • K. E. Gubbins
Article

Abstract

The behavior of a simple model of a fluid confined to a single, infinitely long cylindrical pore is investigated by means of both a grand canonical Monte Carlo computer simulation and a mean-field theory. The theory is used to calculate the density profile of the fluid, as well as the grand potential of the system. The effect of the (size of the) pore radius as well as the temperature and pressure on the phase behavior of the fluid is studied in some detail, and the results are compared to those produced by related work in this field. The preliminary results from the simulation indicate that, in pores whose radii are a few molecular diameters in size, the fluid molecules tend to pack in cylindrically concentric shells about the axis of the pore.

Key words

adsorption capillary condensation pores size effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. M. Ruthven, Principles of Adsorption and Adsorption Processes (Wiley, New York, 1984).Google Scholar
  2. 2.
    W. J. Schell, Hydrocarbon Process., August issue, p. 43 (1983).Google Scholar
  3. 3.
    J. D. Walls, A. M. Nur, and T. Bourbie, J. Pet. Tech., April issue, p. 930 (1982).Google Scholar
  4. 4.
    R. Evans and P. Tarazona, Phys. Rev. Lett. 52:557 (1984).Google Scholar
  5. 5.
    S. M. Thompson, K. E. Gubbins, J. P. R. B. Walton, R. A. R. Chantry, and J. S. Rowlinson, J. Chem. Phys. 81:530 (1984).Google Scholar
  6. 6.
    J. S. Rowlinson, Chem. Soc. Rev. 12:251 (1983).Google Scholar
  7. 7.
    W. A. Steele and G. D. Halsey, J. Phys. Chem. 59:57 (1955).Google Scholar
  8. 8.
    D. Adams, Mol. Phys. 28:1241 (1974); 29:307 (1975).Google Scholar
  9. 9.
    D. J. Nicholson and N. G. Parsonage, Computer Simulation and the Statistical Mechanics of Adsorption (Academic Press, London, 1982); J. E. Lane and T. H. Spurling, Aust. J. Chem. 33:231 (1980); 34:1529 (1981); W. van Megen and I. K. Snook, Mol. Phys. 54:741 (1985).Google Scholar
  10. 10.
    J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity (Clarendon Press, Oxford, 1982).Google Scholar
  11. 11.
    J. K. Percus, Trans. N.Y. Acad. Sci. 6:1062 (1964); N. G. van Kampen, Phys. Rev. 135:362 (1964); D. E. Sullivan, Phys. Rev. B 25:5532 (1979).Google Scholar
  12. 12.
    P. Tarazona and R. Evans, Mol. Phys. 52:847 (1984).Google Scholar
  13. 13.
    P. Tarazona and R. Evans, Mol. Phys. 48:799 (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • B. K. Peterson
    • 1
  • J. P. R. B. Walton
    • 1
  • K. E. Gubbins
    • 1
  1. 1.School of Chemical EngineeringCornell UniversityIthacaUSA

Personalised recommendations