Skip to main content
Log in

Solution of the Percus-Yevick equation in the coexistence region of a simple fluid

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

There has been much recent interest in the behavior of integral-equation theories for the distribution functions of a fluid near the critical point and in the two-phase region. For most systems, implementation of these theories necessitates numerical solution of the integral equations. However, for two examples, the adhesive hard sphere fluid in the Percus-Yevick approximation and the hard sphere plus Yukawa tail model in the mean spherical approximation, analytical solutions of the Ornstein-Zernike equation are available. In this work we consider the comparison of results obtained via numerical methods with the analytical solution of the Percus-Yevick equation for the adhesive hard sphere fluid. This complements a recent study by us of the mean spherical approximation for the hard sphere plus Yukawa tail fluid. This allows us to examine carefully how errors arise in the numerical solutions. We examine the accuracy of numerical calculations of the critical exponents as well as the interpretation of solutions obtained in the coexistence region. We discuss the implications of this work for applications to more realistic potentials where only numerical solutions are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. W. Lincoln, J. J. Kozak, and K. D. Luks, J. Chem. Phys. 62:2171 (1975).

    Google Scholar 

  2. K. U. Co, J. J. Kozak, and K. D. Luks, J. Chem. Phys. 64:2197 (1976).

    Google Scholar 

  3. K. Green, K. D. Luks, and J. J. Kozak, Phys. Rev. Lett. 42:985 (1979).

    Google Scholar 

  4. K. Green, K. D. Luks, E. Lee, and J. J. Kozak, Phys. Rev. A 21:356 (1980).

    Google Scholar 

  5. G. L. Jones, J. J. Kozak, E. Lee, S. Fishman, and M. E. Fisher, Phys. Rev. Lett. 46:795 (1981).

    Google Scholar 

  6. S. Fishman, Physica (Utrecht) A109:382 (1981).

    Google Scholar 

  7. M. E. Fisher and S. Fishman, J. Chem. Phys. 78:4227 (1983).

    Google Scholar 

  8. K. A. Green, K. D. Luks, G. L. Jones, E. Lee, and J. J. Kozak, Phys. Rev. A. 25:1060 (1982).

    Google Scholar 

  9. G. L. Jones, E. Lee, and J. L. Kozak, Phys. Rev. Lett. 48:447 (1982).

    Google Scholar 

  10. G. L. Jones, E. Lee, and J. J. Kozak, J. Chem. Phys. 79:459 (1983).

    Google Scholar 

  11. R. J. Baxter, Austr. J. Phys. 21:563 (1968).

    Google Scholar 

  12. E. Waisman, Mol. Phys. 25:45 (1973).

    Google Scholar 

  13. This paper actually uses a related analysis due to M. S. Wertheim, J. Math. Phys. 5:643 (1964).

    Google Scholar 

  14. However, the Baxter method may also be used. See P. T. Cummings and E. R. Smith, Mol. Phys. 38:997 (1979).

    Google Scholar 

  15. R. J. Baxter, J. Chem. Phys. 49:2770 (1968).

    Google Scholar 

  16. S. Fishman and M. E. Fisher, Physica (Utrecht) A108:1 (1981).

    Google Scholar 

  17. P. T. Cummings and G. Stell, J. Chem. Phys. 78:1917 (1983).

    Google Scholar 

  18. P. T. Cummings and P. A. Monson, J. Chem. Phys. 82:4303 (1985).

    Google Scholar 

  19. M. Kac, G. E. Uhlenbeck, and P. C. Hemmer, J. Math. Phys. 4:216 (1963).

    Google Scholar 

  20. M. J. Gillan, Mol. Phys. 38:1781 (1979).

    Google Scholar 

  21. R. O. Watts, J. Chem. Phys. 48:50 (1968).

    Google Scholar 

  22. L. Mier y Terán, A. H. Falls, L. E. Scriven, and H. T. Davis, Proceedings of the 8th Symposium on Thermophysical Properties, J. V. Sengers, ed. (American Society of Mechanical Engineers, New York, 1982), p. 45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monson, P.A., Cummings, P.T. Solution of the Percus-Yevick equation in the coexistence region of a simple fluid. Int J Thermophys 6, 573–584 (1985). https://doi.org/10.1007/BF00500330

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00500330

Key words

Navigation