Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 311, Issue 1, pp 71–77 | Cite as

Inhibitory effects of mepacrine and eicosatetraynoic acid on cyclic GMP elevations caused by calcium and hormonal factors in rat ductus deferens

  • Cornelie Spies
  • Klaus-Dieter Schultz
  • Günter Schultz


Stimulation of cyclic GMP formation by hormones and neurotransmitters is restricted to intact cells and requires the presence of Ca2+ and, as shown for some tissues, of oxygen. Since peroxidized free fatty acids and oxygen radicals can stimulate soluble guanylate cyclase preparations, the effects of agents that interfere with the release or peroxidation of arachidonic acid were studied on Ca2+-and hormone-stimulated cyclic GMP levels in rat ductus deferens.

When isolated tissue was preincubated for 30 min in Ca2+-free Krebs-Ringer-bicarbonate buffer, addition of Ca2+ (2 mM) for 3 min increased cyclic GMP levels about 3-fold. Noradrenaline and acetylcholine (0.1 mM each) added with Ca2+ caused 6- and 8-fold increases, respectively. Sodium nitroprusside (0.1 mM), independently of the presence of Ca2+, caused an 8-fold increase. Preincubation with 0.1 mM mepacrine, an inhibitor of phospholipase A2, abolished the effects of Ca2+ and noradrenaline and reduced the effect of acetylcholine whereas the response to sodium nitroprusside was unchanged. Contractile responses were not affected by mepacrine. Preincubation with the arachidonic acid analogue, eicosatetraynoic acid (0.1 mM), which inhibits arachidonate peroxidation, reduced cyclic GMP responses to Ca2+, acetylcholine, noradrenaline and sodium nitroprusside without significant effect on contractile responses. Whereas the cyclooxygenase inhibitor, indomethacin (0.1 mM), did not affect cyclic GMP responses, nordihydroguaiaretic acid (0.1 m), an antioxidant and lipoxigenase inhibitor, reduced cyclic GMP responses to all of the above stimulants but also reduced contractile responses of the tissue.

These findings support the concept that the release of arachidonic acid and possibly other unsaturated fatty acids by Ca2+-stimulated phospholipases and the subsequent formation of peroxidized fatty acids, which are presumably degraded under formation of an active oxygen species, are involved in hormone-induced stimulation of cyclic GMP formation.

Key words

Cyclic GMP formation α-Adrenergic effects Cholinergic effects Sodium nitroprusside Arachidonic acid metabolism 



Prostaglandin G2


prostaglandin H2


eicosatetraynoic acid


hydroperoxyeicosatetraenoic acid


ethylenediamine tetraacetic acid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, A. F., Haslam, R. J.: Factors affecting the activity of guanylate cyclase in lysates of human blood platelets. Biochem. J. 174, 23–35 (1978)Google Scholar
  2. Amer, S. L.: Cyclic guanosine 3′,5′-monophosphate and gallbladder contraction. Gastroenterology 67, 333–337 (1974)Google Scholar
  3. Andersson, K.-E., Andersson, R. G. G., Hedner, P., Persson, C. G. A.: Interrelations between cyclic AMP, cyclic GMP and contraction in guinea pig gallbladder stimulated by cholecystokinin. Life Sci. 20, 73–78 (1977)Google Scholar
  4. Arnold, W. P., Mittal, C. K., Katsuki, S., Murad, F.: Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparations. Proc. Natl. Acad. Sci. USA 74, 3203–3207 (1977)Google Scholar
  5. Blackwell, G. J., Duncombe, W. G., Flower, R. J., Parsons, M. F., Vane, J. R.: The distribution and metabolism of arachidonic acid in rabbit platelets during aggregation and its modification by drugs. Br. J. Pharmacol. 59, 353–366 (1977)Google Scholar
  6. Böhme, E., Arsenow, W.: Influence of diamide and dithiothreitol on the effect of sodium nitroprusside on the soluble platelet guanylate cyclase. Naunyn-Schmiedeberg's Arch. Pharmacol. 307, R29 (1979)Google Scholar
  7. Böhme, E., Jung, R., Mechler, I.: Guanylate cyclase in human platelets. In: Methods in Enzymology (J. G. Hardman, B. W. O'Malley, eds.), 38, pp. 199–202. New York, London: Academic Press 1974Google Scholar
  8. Böhme, E., Graf, H., Schultz, G.: Effects of sodium nitroprusside and other smooth muscle relaxants on cyclic GMP formation in smooth muscle and platelets. Adv. Cyclic Nucleotide Res. 9, 131–143 (1978)Google Scholar
  9. Chrisman, T. D., Garbers, D. L., Parks, M. A., Hardman, J. G.: Characterization of particulate and soluble guanylate cyclase from rat lung. J. Biol. Chem. 250, 374–381 (1975)Google Scholar
  10. Clyman, R. I., Blacksin, A. S., Manganiello, V. C., Vaughan, M.: Oxygen and cyclic nucleotides in human umbilical artery. Proc. Natl. Acad. Sci. USA 72, 3883–3887 (1975)Google Scholar
  11. Craven, P. A., DeRubertis, F. R.: Restoration of the responsiveness of purified guanylate cyclase to nitrosoguanidine, nitric oxide, and related activators by heme and hemeproteins. Evidence for the involvement of the paramagnetic nitrosyl-heme complex in enzyme activation. J. Biol. Chem. 253, 8433–8443 (1978)Google Scholar
  12. DeRubertis, F. R., Craven, P. A.: Alterations in rat renal cortical and medullary guanosine 3′,5′-monophosphate accumulation by oxygen- and calcium-dependent and-independent mechanisms: Evidence for a calcium-independent action of oxygen in renal inner medulla. Metabolism 27, 855–868 (1978)Google Scholar
  13. Downing, D. T.: Differential inhibition of prostaglandin synthetase and soybean lipoxygenase. Prostaglandins 1, 437–441 (1972)Google Scholar
  14. Egan, R. W., Gale, P. H., Kuehl, F. A., Jr.: Reduction of hydroperoxides in the prostaglandin biosynthetic pathway by a microsomal peroxidase. J. Biol. Chem. 254, 3295–3302 (1979)Google Scholar
  15. Flower, R. J.: Drugs which inhibit prostaglandin synthesis. Pharmacol. Rev. 26, 33–67 (1974)Google Scholar
  16. Flower, R. J.: Prostaglandins and related compounds. In: Inflammation. Handbook of experimental pharmacology, Vol. 50/I (J. R. Vane, S. H. Ferreira, eds.), pp. 374–422. Berlin, Heidelberg, New York: Springer 1978Google Scholar
  17. Flower, R. J., Blackwell, G. J.: The importance of phospholipase A2 in prostaglandin biosynthesis. Biochem. Pharmacol. 25, 285–291 (1976)Google Scholar
  18. Garbers, D. L., Chrisman, T. D., Hardman, J. G.: Guanylate cyclase. In: Eukaryotic cell function and growth. Regulation by intracellular cyclic nucleotides (J. E. Dumont, B. L. Brown, N. J. Marshall, eds.), pp. 155–193. New York, London: Plenum Press 1976Google Scholar
  19. Glass, D. B., Frey, W. H., II, Carr, D. W., Goldberg, N. D.: Stimulation of human platelet guanylate cyclase by fatty acids. J. Biol. Chem. 252, 1279–1285 (1977a)Google Scholar
  20. Glass, D. B., Gerrard, F. M., Townsend, D., Carr, D. W., White, J. G., Goldberg, N. D.: The involvement of prostaglandin endoperoxide formation in the elevation of cyclic GMP levels during platelet aggregation. J. Cyclic Nucleotide Res. 3, 37–44 (1977b)Google Scholar
  21. Goldberg, N. D., Haddox, M. K.: Cyclic GMP metabolism and involvement in biological regulation. Ann. Rev. Biochem. 46, 823–896 (1977)Google Scholar
  22. Graff, G., Stephenson, J. H., Glass, D. B., Haddox, M. K., Goldberg, N. D.: Activation of soluble splenic cell guanylate cyclase by prostaglandin endoperoxides and fatty acid hydroperoxides. J. Biol. Chem. 253, 7662–7676 (1978)Google Scholar
  23. Haddox, M. K., Stephenson, J. H., Moser, M. E., Goldberg, N. D.: Oxidative-reductive modulation of guinea pig splenic cell guanylate cyclase activity. J. Biol. Chem. 253, 3143–3152 (1978)Google Scholar
  24. Ham, E. A., Egan, R. W., Soderman, D. D., Gale, P. H., Kuehl, F. A., Jr.: Peroxidase-dependent deactivation of prostacyclin synthetase. J. Biol. Chem. 254, 2191–2194 (1979)Google Scholar
  25. Hamberg, M.: On the formation of thromboxane B2 and 12L-hydroxy-5, 8, 10, 14-eicosatetraenoic acid (12 ho-20:4) in tissues from the guinea pig. Biochim. Biophys. Acta 431, 651–654 (1976)Google Scholar
  26. Hamberg, M., Samuelsson, B.: Prostaglandin peroxides. Novel transformations of arachidonic acid in human platelets. Proc. Natl. Acad. Sci. USA 71, 3400–3404 (1974)Google Scholar
  27. Hidaka, H., Asano, T.: Stimulation of human platelet guanylate cyclase by unsaturated fatty acid peroxides. Proc. Natl. Acad. Sci. USA 74, 3657–3661 (1977)Google Scholar
  28. Horton, E. W.: Hypotheses on physiological roles of prostaglandins. Physiol. Rev. 49, 122–161 (1969)Google Scholar
  29. Howell, S. L., Montague, W.: Regulation of guanylate cyclase in guinea pig islets of Langerhans. Biochem. J. 142, 379–384 (1974)Google Scholar
  30. Katsuki, S., Murad, F.: Regulation of adenosine cyclic 3′,5′-monophosphate and guanosine cyclic 3′,5′-monophosphate levels and contractility in bovine tracheal smooth muscle. Mol. Pharmacol. 13, 330–341 (1977)Google Scholar
  31. Knapp, H. R., Oelz, O., Roberts, L. J., Sweetman, B. J., Oates, J. A., Reed, P. W.: Ionophores stimulate prostaglandin and thromboxane synthesis. Proc. Natl. Acad. Sci. USA 74, 4251–4255 (1977)Google Scholar
  32. Kraska, R. C., Stephenson, J. H., Goldberg, N. D.: Spontaneous, oxidative activation and inactivation of rat uterine guanylate cyclase. Fed. Proc. 36, 686 (1977)Google Scholar
  33. Mittal, C. K., Murad, F.: Activation of guanylate cyclase by superoxide dismutase and hydroxyl radical: A physiological regulator of guanosine 3′,5′-monophosphate formation. Proc. Natl. Acad. Sci. USA 74, 4360–4364 (1977)Google Scholar
  34. Molenaar, I., Vos, J., Hommes, F. A.: Effect of vitamin E deficiency on cellular membranes. Vitam. and Horm. 30, 45–82 (1972)Google Scholar
  35. Newkirk, F. D., Waite, M.: Phospholipid hydrolysis by phospholipases A1 and A2 in plasma membranes and microsomes of rat liver. Biochim. Biophys. Acta 298, 562–576 (1973)Google Scholar
  36. Pickett, W. C., Jesse, R. L., Cohen, P.: Initiation of phospholipase A2 activity in human platelets by the calcium ionophore A23187. Biochim. Biophys. Acta 486, 209–213 (1977)Google Scholar
  37. Rittenhouse-Simmons, S., Deykin, D.: The activation by Ca2+ of platelet phospholipase A2. Effects of dibutyryl cyclic adenosine monophosphate and 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate. Biochim. Biophys. Acta 543, 409–422 (1978)Google Scholar
  38. Schultz, G., Schultz, K., Hardman, J. G.: Effects of norepinephrine on cyclic nucleotide levels in the ductus deferens on the rat. Metabolism 24, 429–437 (1975)Google Scholar
  39. Schultz, K.-D., Schultz, K., Schultz, G.: Effects of manganese on cyclic GMP levels in the rat ductus deferens. Naunyn-Schmiedeberg's Arch. Pharmacol. 298, 197–204 (1977a)Google Scholar
  40. Schultz, K.-D., Schultz, K., Schultz, G.: Sodium nitroprusside and other smooth muscle relaxants increase cyclic GMP levels in rat ductus deferens. Nature 265, 750–751 (1977b)Google Scholar
  41. Schultz, K.-D., Böhme, E., Kreye, V. W., Schultz, G.: Relaxation of hormonally stimulated smooth muscular tissues by the 8-bromo derivative of cyclic GMP. Naunyn-Schmiedeberg's Arch. Pharmacol. 306, 1–9 (1979b)Google Scholar
  42. Schultz, G., Hardman, J. G., Schultz, K., Baird, C. E., Sutherland, E. W.: The importance of calcium ions for the regulation of guanosine 3′,5′-cyclic monophosphate levels. Proc. Natl. Acad. Sci. USA 70, 3889–3893 (1973a)Google Scholar
  43. Schultz, G., Hardman, J. G., Schultz, K., Davis, J. W., Sutherland, E. W.: A new enzymatic assay for guanosine 3′,5′-cyclic monophosphate and its application to the ductus deferens of the rat. Proc. Natl. Acad. Sci. USA 70, 1721–1725 (1973b)Google Scholar
  44. Schultz, G., Schultz, K.-D., Böhme, E., Kreye, V. A. W.: The possible role of cyclic GMP in the actions of hormones and drugs on smooth muscle tone: Effects of exogenous cyclic GMP derivatives. In: Advances in pharmacology and therapeutics. Proc. 7th Internat. Congr. Pharmacology, Vol. 3, pp. 113–122. Oxford, New York: Pergamon Press 1978Google Scholar
  45. Schultz, G., Spies, C., Schultz, K.-D.: Reduction of calcium- and hormone-induced elevations of cyclic GMP levels by mepacrine and eicosatetraynoic acid. Fed. Proc. 38, 432 (1979a)Google Scholar
  46. Spies, C., Schultz, K.-D., Schultz, G.: Inhibition of calcium- and hormone-induced elevations of cyclic GMP levels by mepacrine and eicosatetraynoic acid. Naunyn-Schmiedeberg's Arch. Pharmacol. 307, R28 (1979)Google Scholar
  47. Struck, C.-J., Glossmann, H.: Soluble bovine adrenal cortex guanylate cyclase: Effect of sodium nitroprusside, nitrosamines, and hydrophobic ligands on activity, substrate specificity and cation requirement. Naunyn-Schmiedeberg's Arch. Pharmacol. 304, 51–61 (1978)Google Scholar
  48. Sulakhe, P. V., Sulakhe, S. J., Leung, N.: Properties of plasma membrane-associated and soluble guanylate cyclase of cardiac and skeletal muscle. Circulation 52, Suppl. II, 246 (1975)Google Scholar
  49. Vargaftig, B. B., Dao Hai, N.: Selective inhibition by mepacrine of the release of “rabbit aorta contracting substance” evolved by the administration of bradykinin. J. Pharm. Pharmacol. 24, 159–161 (1972)Google Scholar
  50. Wallach, D., Pastan, I.: Stimulation of guanylate cyclase of fibroblasts be free fatty acids. J. Biol. Chem. 251, 5802–5809 (1976)Google Scholar
  51. White, L. E., Ignarro, L. J., George, W. J.: Stimulation of rat cardiac guanyl cyclase by acetylcholine. Pharmacologist 15, 157 (1973)Google Scholar
  52. White, A. A., Crawford, K. M., Patt, C. S., Lad, P. J.: Activation of soluble guanylate cyclase from rat lung by incubation or by hydrogen peroxide. J. Biol. Chem. 251, 7304–7312 (1976)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Cornelie Spies
    • 1
  • Klaus-Dieter Schultz
    • 1
  • Günter Schultz
    • 1
  1. 1.Pharmakologisches InstitutUniversität HeidelbergHeidelbergGermany

Personalised recommendations