Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 310, Issue 2, pp 113–119 | Cite as

GTP-dependent inhibition of cardiac adenylate cyclase by muscarinic cholinergic agonists

  • Karl H. Jakobs
  • Klaus Aktories
  • Günter Schultz


In membrane-containing particles of rabbit myocardium, inhibition of adenylate cyclase (EC by cholinergic agonists was studied. The cholinergic agonists, in the potency order oxotremorine > acetylcholine > carbachol, reduced basal adenylate cyclase activity with half-maximal effects at about 0.3, 1 and 3 μM, respectively; maximal inhibition observed was about 40%. The enzyme inhibition occurred without apparent lag phase and was reversed by the muscarinic cholinergic antagonist, atropine, which finding indicates that muscarinic cholinergic receptors are involved in this process.

As for stimulation of cardiac adenylate cyclase by the β-adrenergic agonist, isoproterenol, the addition of GTP was necessary for maximal enzyme inhibition by the cholinergic agonists. The effects of GTP were half-maximal at about 0.2 and 1 μM and maximal at about 3 and 30 μM GTP for stimulation and inhibition, respectively. NaCl, which increased cardiac adenylate cyclase activity, facilitated the GTP-dependent cholinergic inhibition; the NaCl effect was maximal between 50 and 100 mM.

In the presence of GTP, the cholinergic agonist, carbachol, not only reduced basal adenylate cyclase activity, but also inhibited adenylate cyclase stimulated by isoproterenol (100 μM) or NaF (10 mM). In the presence of cholera toxin (40 μg/ml), the GTP-induced activation of the enzyme was counteracted by carbachol. However, the stable GTP-analogues, guanylyl-5′-imidodiphosphate and guanosine-5′-O-(3-thiotriphosphate), which caused a persistent adenylate cyclase activation, reversed or prevented the carbachol-induced inhibition.

The data indicate that cholinergic agonists inhibit cardiac adenylate cyclase by a process that requires (the hydrolyzable) GTP and involves sodium ions.

Key words

Myocardium Muscarinic cholinergic receptors Adenylate cyclase inhibition Guanine nucleotides Sodium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aktories, K., Jakobs, K. H.: GTP-dependent inhibition of cardiac adenylate cyclase by muscarinic cholinergic receptor stimulation. Hoppe Seylers Z. Physiol. Chem. 360, 223 (1979)Google Scholar
  2. Aktories, K., Schultz, G., Jakobs, K. H.: Inhibition of hamster fat cell adenylate cyclase by prostaglandin E1 and epinephrine: Requirement for GTP and sodium ions. FEBS Lett. 107, 100–104 (1979)Google Scholar
  3. Birnbaumer L: The actions of hormones and nucleotides on membrane-bound adenylyl cyclases: An overview. In: Receptors and hormone action, Vol. 1 (B. W. O'Malley, L. Birnbaumer, eds.), pp. 485–547. New York, London: Academic Press 1977Google Scholar
  4. Cassel, D., Selinger, Z.: Catecholamine-stimulated GTPase activity in turkey erythrocyte membranes. Biochim. Biophys. Acta 452, 538–551 (1976)Google Scholar
  5. Cassel, D., Selinger, Z.: Mechanism of adenylate cyclase activation by cholera toxin: Inhibition of GTP hydrolysis at the regulatory site. Proc. Natl. Acad. Sci. USA 74, 3307–3311 (1977)Google Scholar
  6. Cassel, D., Selinger, Z.: Mechanism of adenylate cyclase activation through the β-adrenergic receptor: Catecholamine-induced displacement of bound GDP. Proc. Natl. Acad. Sci. USA 75, 4155–4159 (1978)Google Scholar
  7. Cavey, D., Vincent, J. P., Làzdunski, M.: The muscarinic receptor of heart cell membranes. FEBS Lett. 84, 110–114 (1977)Google Scholar
  8. Fields, J. Z., Roeske, W. R. Morkin, E., Yamamura, H. I.: Cardiac muscarinic cholinergic receptors. Biochemical identification and characterization. J. Biol. Chem. 253, 3251–3258 (1978)Google Scholar
  9. Galper, J. B., Smith, T. W.: Properties of muscarinic acetylcholine receptors in heart cell cultures. Proc. Natl. Acad. Sci. USA 75, 5831–5835 (1978)Google Scholar
  10. Galper, J. B., Klein, W., Caterall, W. A.: Muscarinic acetylcholine receptors in developing chick heart. J. Biol. Chem. 252, 8692–8699 (1977)Google Scholar
  11. George, W. J., Polson, J. B., O'Toole, A. G., Goldberg, N. D.: Elevation of guanosine 3′,5′-cyclic phosphate in rat heart after perfusion with acetylcholine. Proc. Natl. Acad. Sci. USA 66, 398–403 (1970)Google Scholar
  12. George, W. J., Wilkerson, R. D., Kadowitz, P. J.: Influence of acetylcholine on contractile force and cyclic nucleotide levels in the isolated perfused rat heart. J. Pharmacol. Exp. Ther. 184, 228–235 (1972)Google Scholar
  13. Jakobs K. H.: GTP-dependent inhibition of platelet adenylate cyclase by α-adrenergic agonists. In: Proceedings of the 12th FEBS Meeting, cyclic nucleotides and protein phosphorylation in cell regulation, Vol. 54 (E.-G. Krause, L. Pinna, A. Wollenberger, eds.), pp. 11–20. Oxford: Pergamon Press 1979Google Scholar
  14. Jakobs, K. H., Saur, W. Schultz, G.: Reduction of adenylate cyclase activity in lysates of human platelets by the alpha-adrenergic component of epinephrine. J. Cyclic Nucleotide Res. 2, 381–392 (1976)Google Scholar
  15. Jakobs, K. H., Saur, W., Schultz, G.: Inhibition of platelet adenylate cyclase by epinephrine requires GTP. FEBS Lett. 85, 167–170 (1978)Google Scholar
  16. LaRaia, P. J., Sonnenblick, E. H.: Autonomic control of cardiac cAMP. Circ. Res. 28, 377–384 (1971)Google Scholar
  17. Londos, C., Cooper, D. M. F., Schlegel, W., Rodbell, M.: Adenosine analogs inhibit adipocyte adenylate cyclase by a GTP-dependent process: Basis for actions of adenosine and methylxanthines on cyclic AMP production and lipolysis. Proc. Natl. Acad. Sci. USA 75, 5362–5366 (1978)Google Scholar
  18. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)Google Scholar
  19. Murad, F., Chi, Y.-M., Rall, T. W., Sutherland, E. W.: Adenyl cyclase. III. The effect of catecholamines and choline esters on the formation of adenosine 3′,5′-phosphate by preparations from cardiac muscle and liver. J. Biol. Chem. 237, 1233–1238 (1962)Google Scholar
  20. Rodbell, M.: The role of nucleotide regulatory components in the coupling of hormone receptors and adenylate cyclase. In: Molecular biology and pharmacology of cyclic nucleotides (G. Folco, R. Paoletti, eds.), pp. 1–12. Amsterdam, New York: Elsevier/North-Holland 1978Google Scholar
  21. Sabol, S. L., Nirenberg, M.: Regulation of adenylate cyclase of neuroblastoma x glioma hybrid cells by α-adrenergic receptors. I. Inhibition of adenylate cyclase mediated by α receptors. J. Biol. Chem. 254, 1913–1920 (1979)Google Scholar
  22. Tsien, R. W.: Cyclic AMP and contractile activity in heart. In: Advances in cyclic nucleotide research, Vol. 8 (P. Greengard, G. A. Robison, eds.), pp. 363–420. New York: Raven Press 1977Google Scholar
  23. Walseth, R. F., Johnson, R. A.: The enzymatic preparation of [α-32P]nucleoside triphosphates, cyclic [32P]AMP, and cyclic [32P]GMP. Biochim. Biophys. Acta 562, 11–31 (1979)Google Scholar
  24. Watanabe, A. M., McConnaughey, M. M., Strawbridge, R. A., Fleming, J. W., Jones, L. R., Besch, H. R., Jr.: Muscarinic cholinergic receptor modulation of β-adrenergic receptor affinity for catecholamines. J. Biol. Chem. 253, 4833–4836 (1978)Google Scholar
  25. Yamamura, H., Lad, P. M., Rodbell, M.: GTP stimulates and inhibits adenylate cyclase in fat cell membranes through distinct regulatory processes. J. Biol. Chem. 252, 7964–7966 (1977)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Karl H. Jakobs
    • 1
  • Klaus Aktories
    • 1
  • Günter Schultz
    • 1
  1. 1.Pharmakologisches Institut der Universität HeidelbergHeidelbergFederal Republic of Germany

Personalised recommendations