International Journal of Thermophysics

, Volume 7, Issue 2, pp 357–366 | Cite as

Direct determination of the second refractivity virial coefficient of methane, nitrogen, and five of their mixtures

  • H. J. Achterman
  • T. K. Bose
  • M. Jaeschke
  • J. M. St-Arnaud
Article

Abstract

The experimental technique for the direct determination of the second refractivity virial coefficient is described. The absolute measurement of the refractive index n combined with an expansion technique for obtaining the higher-order coefficients of the Lorentz-Lorenz expansion
$${\text{LL = [(}}n^2 - 1)/(n^2 + 2)]{\text{ }}\rho ^{ - 1} {\text{ = }}A_n {\text{ }} + {\text{ }}B_n \rho {\text{ }} + {\text{ }}C_n \rho ^2 {\text{ + }} \cdot \cdot \cdot $$
leads to precise values of density ρ. Anis the ideal molar refractivity, which is readily determined from the absolute measurements of n in terms of pressure, whereas Bn, Cn,... are the higher-order molar refractivity virial coefficients, which are obtained from expansion experiments. The expansion method consists in measuring the sum of optical path lengths of two similar cells: one of them is filled with the gas at density ρ, and the other is evacuated. After the expansion the density is nearly halved and one measures again the optical path lengths. In order to cancel the small differences in volume and path lengths between the two cells, the process is reversed. Because the linear term in density remains the same before and after the expansion and only the quadratic and higher-order terms change, we can determine the refractivity virial coefficients Bn, Cn,... from the change in the optical path lengths. The measurements for the determination of Bnand Cnfor methane, nitrogen, and five mixtures were carried out at 323.15 K and pressures up to 450 bar. The mixed-interaction constant for methane and nitrogen derived from the experimental second refractivity virial coefficient is compared with those obtained from the geometric and linear mixing rule as well as Lorentz combination.

Key words

expansion technique Lorentz-Lorenz function mixed interaction refractive index refractivity virial coefficient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. St-Arnaud and T. K. Bose, J. Chem. Phys. 65:4854 (1976).Google Scholar
  2. 2.
    T. K. Bose, J. M. St-Arnaud, H. J. Achtermann, and R. Scharf, Rev. Sci. Inst. 57:26 (1986).Google Scholar
  3. 3.
    T. K. Bose and R. H. Cole, J. Chem. Phys. 52:140 (1970).Google Scholar
  4. 4.
    T. K. Bose and R. H. Cole, J. Chem. Phys. 54:3829 (1971).Google Scholar
  5. 5.
    M. Benedict, G. B. Webb, and L. C. Rubin, J. Chem. Phys. 10:747 (1942).Google Scholar
  6. 6.
    T. K. Bose, in Collision Induced Absorption, G. Birnbaum, ed. (NATO Series, Plenum, New York, 1985), Series B, 127, p. 49.Google Scholar
  7. 7.
    H. J. Achtermann and H. Rögener, Proc. 8th Symp. Thermophys. Prop., Vol. 1, J. V. Sengers, ed. (Am. Soc. Mech. Eng., New York, 1982), p. 142.Google Scholar
  8. 8.
    A. D. Buckingham, R. H. Cole, and H. Sutter, J. Chem. Phys. 52:5960 (1970).Google Scholar
  9. 9.
    J. M. St-Arnaud and T. K. Bose, Bull. Am. Phys. Soc. 17:68 (1972).Google Scholar
  10. 10.
    A. D. Buckingham and C. Graham, Proc. R. Soc. Lond. A336:275 (1974).Google Scholar
  11. 11.
    J. C. Olson, J. Chem. Phys. 63:474 (1975).Google Scholar
  12. 12.
    G. Montixi and R. Coulon, C.R. Acad. Sci. t. 296:135 (1983).Google Scholar
  13. 13.
    H. J. Achtermann, T. K. Bose, H. Rögener, and J. M. St-Arnaud, Int. J. Thermophys. (in press).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • H. J. Achterman
    • 1
  • T. K. Bose
    • 2
  • M. Jaeschke
    • 3
  • J. M. St-Arnaud
    • 2
  1. 1.Institüt für ThermodynamikUniversität HannoverFederal Republic of Germany
  2. 2.Département de PhysiqueUniversité du QuébecTrois-RivièresCanada
  3. 3.Ruhrgas AGEssenFederal Republic of Germany

Personalised recommendations