New characteristics of harmaline inhibition of intestinal transport systems

  • F. V. Sepúlveda
  • J. W. L. Robinson
Article

Summary

Harmaline strongly inhibits the uptake of phenylalanine by slices of guinea-pig intestine in vitro. The lowest concentration having a significant effect is 0.1 mM. The drug also inhibits the unidirectional flux of phenylalanine from the mucosal to serosal face of the tissue provided it is added to the solution bathing the mucosal surface. The unidirectional flux of sodium from the mucosa to the serosa was similarly reduced. Ion and water absorption in the perfused dog intestine in vivo is also diminished in the presence of harmaline. These results support the hypothesis, previously proposed in view of the rapid onset of harmaline inhibition of sodium-dependent uptake mechanisms in a variety of tissues, that harmaline interacts with the sodium-site of non-electrolyte carrier complexes.

The effect of harmaline on phenylalanine uptake by the intestine is duplicated by other psychotropic indole analogues. The actions of harmine and harmalol are similar to that of harmaline, despite great differences in the liposolubility of the different compounds. N:N-dimethyl-tryptamine is equally inhibitory, but serotonin is inactive. Mescaline and lysergic acid diethylamide also inhibit phenylalanine transport, but to a much lesser extent than harmaline.

Key words

Harmaline Intestinal Transport Hallucinogenic Drugs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aghajanian, G. K., Freedman, D. X.: Biochemical and morphological aspects of LSD pharmacology. In: Psychopharmacology (ed. D. H. Efron), pp. 1185–1193. Washington: US Public Health Service 1968Google Scholar
  2. Alvarado, F.: Effect of phloretin and phlorizin on sugar and amino acid transport systems in small intestine. FEBS Symp. 20, 131–139 (1970)Google Scholar
  3. Alvarado, F., Mahmood, A.: Cotransport of organic solutes and sodium ions in the small intestine: a general model. Amino acid transport. Biochemistry 13, 2882–2890 (1974)Google Scholar
  4. Canessa, M., Jaimovich, E., de la Fuente, M.: Harmaline: a competitive inhibitor of Na ion in the (Na++K+)-ATPase system. J. Membr. Biol. 13, 263–282 (1973)Google Scholar
  5. Deulofeu, V.: Chemical compounds isolated from Banisteriopsis and related species. In: Ethnopharmacologic search for psychoactive drugs (ed. D. H. Efron), pp. 393–402. Washington: US Public Health Service 1967Google Scholar
  6. Hochstein, F. A., Paradies, A. M.: Alkaloids of Banisteria caapi and Prestonia amazonicum. J. Amer. chem. Soc. 79, 5735–5736 (1957)Google Scholar
  7. Lison, L.: Statistique appliq'ée à la biologie expérimentale. pp. 230–233. Paris: Gauthier-Villars 1968Google Scholar
  8. Luisier, A. L., Robinson, J. W. L.: Inhibition of intestinal sugar and amino acid transport by n-butyl-biguanide. In: Comparative Physiology (eds. L. Bolis, K. Schmidt-Nielsen and S. H. P. Maddrell), pp. 465–475. Amsterdam: North Holland 1973Google Scholar
  9. Mirkovitch, V., Menge, H., Robinson, J. W. L.: The effect of intraluminal hydrostatic pressure on intestinal absorption in vivo. Experientia (Basel) 30, 912–913 (1974)Google Scholar
  10. Mors, W. B., Zaltzman, P.: Sôbre o alcalóide da Banisteria caapi Spruce e do Cabi paraensis Ducke. Bol. Inst. Quím. agr. (Rio de Janeiro) 34, 17–27 (1954)Google Scholar
  11. Naranjo, C.: Psychotropic properties of the harmala alkaloids. In: Ethnopharmacologic search for psychoactive drugs (ed. D. H. Efron), pp. 385–391. Washington: US Public Health Service 1967Google Scholar
  12. Pearce, S. C.: Biological statistics: An introduction. pp. 34–39. New York: McGraw-Hill 1965Google Scholar
  13. Poisson, J.: Note sur le “natem”, boisson toxique péruvienne et ses alcaloïdes. Ann. pharm. franç. 23, 241–244 (1965)Google Scholar
  14. Robinson, J. W. L.: Comparative aspects of the response of the intestine to its ionic environment. Comp. Biochem. Physiol. 34, 641–655 (1970)Google Scholar
  15. Robinson, J. W. L.: The inhibition of glycine and β-methylglucoside transport in dog kidney cortex slices by ouabain and ethacrynic acid: Contribution to the understanding of sodium-pumping mechanisms. Comp. gen. Pharmacol. 3, 145–159 (1972)Google Scholar
  16. Robinson, J. W. L.: Inhibition of transport processes in the dog colon. In: Intestinal ion transport (ed. J. W. L. Robinson), pp. 287–298. Lancaster: Medical & Technical Publ. Co. 1975Google Scholar
  17. Robinson, J. W. L., Luisier, A.-L., Mirkovitch, V.: Transport of amino-acids and sugars by the dog colonic mucosa. Pflügers Arch. 345, 317–326 (1973)Google Scholar
  18. Schultes, R. E.: The identity of the malphighiaceous narcotics of South America. Bot. Mus. Leafl. Harvard 18, 1–56 (1957)Google Scholar
  19. Sepúlveda, F. V., Robinson, J. W. L.: Harmaline, a potent inhibitor of sodium-dependent transport. Biochim. biophys. Acta (Amst.) 373, 527–531 (1974)Google Scholar
  20. Sepúlveda, F. V., Robinson, J. W. L.: Influence of harmaline on sodium and sodium-dependent transport mechanisms in brush border. In: Intestinal ion transport (ed. J. W. L. Robinson), pp. 157–170. Lancaster: Medical & Technical Publ. Co. 1975Google Scholar
  21. Uscátegui Mendoza, N.: Distribución actual de las plantas narcóticas y estimulantes usadas por las tribus indígenas de Colombia. Rev. Acad. col. Cienc. exact. fís. nat. (Bogotá) 11, 215–228 (1961)Google Scholar
  22. Zetler, G., Singbartl, G., Schlosser, L.: Cerebral pharmacokinetics of tremor-producing harmala and iboga alkaloids. Pharmacology (Basel) 7, 237–248 (1972)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • F. V. Sepúlveda
    • 1
  • J. W. L. Robinson
    • 1
  1. 1.Départment de Chirurgie ExpérimentaleHôpital Cantonal UniversitaireLausanneSwitzerland

Personalised recommendations