Skip to main content
Log in

Thermal conductivity and heat capacity of solid nabr under pressure

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Using the transient hot-wire method, measurements were made for solid NaBr of both the thermal conductivity and the heat capacity per unit volume. The measurements were performed in the temperature range 100 to 400 K and at pressures up to 2 GPa. An adiabatic compression technique allowed the determination of the thermal expansivity as a function of pressure at room temperature. The heat capacity did not vary with pressure. Analysis of the thermal conductivity data showed that it can be described adequately by the Leibfried-Schlömann formula. For temperatures up to 400 K only acoustic modes needed to be taken into account. A small contribution of optic modes to the heat transport might be apparent at the highest temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Slack, in Solid State Physics, Vol. 34, F. Seitz, D. Turnbull, and H. Ehrenreich, eds. (Academic Press, New York, 1979), pp. 1–71.

    Google Scholar 

  2. D. Gerlich and P. Andersson, J. Phys. C Solid State Phys. 15:5211 (1982).

    Google Scholar 

  3. P. Andersson, Submitted for publication (1984).

  4. G. A. Slack and R. G. Ross, Submitted for publication (1984).

  5. R. G. Ross, P. Andersson, and G. Bäckström, Mol. Phys. 38:377 (1979).

    Google Scholar 

  6. R. G. Ross, P. Andersson, and G. Bäckström, High Temp.-High Press. 9:87 (1977).

    Google Scholar 

  7. S. N. Vaidya and G. C. Kennedy, J. Phys. Chem. Solids 32:951 (1971).

    Google Scholar 

  8. O. Sandberg, Thermal Properties of Organic Glass Formers Under Pressure (Dissertation, University of Umeå, Umeå, 1980).

    Google Scholar 

  9. A. Eucken and G. Kuhn, Z. Physical. Chem. 134:193 (1928).

    Google Scholar 

  10. A. V. Petrov, N. S. Tsypkina, and Yu. A. Logachev, Sou. Phys. Solid State 16:39 (1974).

    Google Scholar 

  11. A. V. Petrov, Nauka (Moscow-Leningrad, 1963), p. 27.

  12. E. T. Gardner and A. R. Taylor, Jr., U.S. Bur. Mines RI 6435, pp. 1–8, 1964.

    Google Scholar 

  13. Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and T. V. R. Lee, Thermal Expansion Nonmetallic Solids Thermophysical Properties of Matter, Vol. 13 (IFI Plenum, New York, 1977), p. 821.

    Google Scholar 

  14. Landolt-Börnstein, in Numerical Data and Functional Relationships in Science and Technology, Vol. 11 (Springer-Verlag, Berlin-Heidelberg-New York, 1979), pp. 30, 88.

    Google Scholar 

  15. G. Leibfried and E. Schlömann, Nach. Akad. Wiss. Göttingen Math. Phys. Klasse IIa:71 (1954).

    Google Scholar 

  16. C. L. Julian, Phys. Rev. 137A:128 (1965).

    Google Scholar 

  17. M. Roufosse and P. G. Klemens, Phys. Rev. B7:5379 (1973).

    Google Scholar 

  18. J. S. Reid, T. Smith, and W. J. L. Buyers, Phys. Rev. B1:1833 (1970).

    Google Scholar 

  19. R. W. Roberts and R. Ruppin, Phys. Rev. 4:2041 (1971).

    Google Scholar 

  20. R. G. Ross, P. Andersson, B. Sundqvist, and G. Bäckström, Rep. Prog. Phys. 47:1347 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigalas, I., Håkanson, B. & Andersson, P. Thermal conductivity and heat capacity of solid nabr under pressure. Int J Thermophys 6, 177–190 (1985). https://doi.org/10.1007/BF00500030

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00500030

Key words

Navigation