Skip to main content
Log in

Thermal accommodation coefficient of gases on controlled solid surfaces: Argon-tungsten system

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The knowledge of the thermal accommodation coefficient for gases on well-controlled surfaces as a function of temperature is imperative to understanding the mechanism of interphase heat transfer on the microscopic level. With this goal in view, a heat transfer column instrument is designed, fabricated, assembled, and tested for the specific case a argon—tungsten system. With 99.9999%, pure argon, six sets of data are taken in the rarefied gas region in the maximum temperature range of 500–1500 K. Four sets of these measurements are in the temperature-jump region and are analyzed by the constant-power method to compute the thermal accommodation coefficient of argon on a controlled tungsten surface. The other two sets are taken under free-molecular flow conditions and are interpreted in accordance with the man-free-path kinetic theory for the low-pressure regime. These data are compared and discussed in the context of reported data in the literature and interpreted in the light of the surface condition and finish of the tungsten wire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

area of the solid surface

C j :

constants in Eq. (3); j=0, 1, 2, 3, and 4

E i :

incident energy flux

E r :

reflected energy flux

E s :

reflected energy flux when the interaction between the gas and the solid atoms is complete

g :

temperature-jump distance

L :

half-length of the metal wire

M :

molecular weight of the gas

P :

gas pressure

Q H :

total thermal energy conducted by the gas per unit time from the hot surface

QKT :

total thermal energy conducted by the gas per unit time if the striking gas molecules were to attain thermal equilibrium with the hot surface

R :

molar gas constant

r :

radial coordinate

r f :

radius of the hot wire

S :

sticking coefficient

So :

initial sticking coefficient

T :

temperature

T e :

linearly extrapolated gas temperature on the hot-wire surface

T g :

temperature of the impinging gas molecules

T H :

temperature of the hot surface

T i :

temperature of the incident gas stream

T r :

temperature of the gas molecules receding after collision with the solid surface

T s :

temperature of the solid surface

α :

thermal accommodation coefficient for the gas—solid surface

ρ :

resistivity of the metal wire

θ:

gas coverage on the solid surface

References

  1. S. C. Saxena and R. K. Joshi, Thermal Accommodation Coefficient and Adsorption of Gases (McGraw-Hill, New York, 1979).

    Google Scholar 

  2. F. M. Devienne, Advances in Heat Transfer 2:271 (1965).

    Google Scholar 

  3. S. H. P. Chen and S. C. Saxena, Int. J. Heat Mass Transfer 17:185 (1974).

    Google Scholar 

  4. B. J. Jody and S. C. Saxena, in Heat Transfer, Proc. Fifth Int. Heat Trans. Conf. (Science Council of Japan, 1974), Vol. I, p. 264.

  5. S. H. P. Chen and S. C. Saxena, Paper presented at the Symposium of Fundamental Research on Interfacial Phenomena, National Meeting, August 18–21, 1974, American Institute of Chemical Engineers, New York.

    Google Scholar 

  6. S. H. P. Chen and S. C. Saxena, High Temp. Sci. 8:1 (1970).

    Google Scholar 

  7. B. J. Jody, P. C. Jain, and S. C. Saxena, Chem. Phys. Lett. 48:545 (1979).

    Google Scholar 

  8. S. C. Saxena and S. H. P. Chen, J. Phys. B Atom. Mol. Phys. 10:2011 (1977).

    Google Scholar 

  9. B. J. Jody and S. C. Saxena, in Heat and Mass Transfer Sourcebook: Fifth All-Union Con- ference, M. A. Styrikovich, A. Zukauskas, J. P. Hartnett, and T. F. Irvine, Jr., eds. (Scripta, Washington, D.C., 1977), p. 302.

    Google Scholar 

  10. B. J. Jody, S. C. Saxena, A. G. Shashkov, F. P. Kamchatov, and D. A. Kolenchits, in Proceedings, Seventh Symposium on Thermophysical Properties, A. Cezairliyan, ed. (American Society of Mechanical Engineers, United Engineering Center, New York, 1977), p. 760.

    Google Scholar 

  11. R. Afshar, A. Alimadadian, and S. C. Saxena, High Temp. Sci. 11:79 (1979).

    Google Scholar 

  12. R. Afshar, S. C. Saxena, F. P. Kamchatov, and A. G. Shashkov, High Temp. Sci. 11:187 (1979).

    Google Scholar 

  13. L. Brewer, Chem. Rev. 52:1 (1953).

    Google Scholar 

  14. D. L. Chapman and P. W. Reynolds, Proc. Roy. Soc. (Lond.) A158:283 (1936).

    Google Scholar 

  15. A. J. Melmed, J. Appl. Phys. 36:3691 (1965).

    Google Scholar 

  16. H. Y. Wachman, The Thermal Accommodation Coefficients and Adsorption on Tungsten, Ph.D. thesis (University of Missouri, Rolla, 1957).

    Google Scholar 

  17. R. Gomer and J. K. Hulm, J. Chem. Phys. 27:1363 (1957).

    Google Scholar 

  18. J. Geus, in Physical and Chemical Aspects of Adsorbents and Catalysis, B. G. Linsen, ed. (Academic Press, New York, 1970), Chap. 11.

    Google Scholar 

  19. Yu. G. Ptushinskii and B. A. Chuikov, Surf. Sci. 7:507 (1967).

    Google Scholar 

  20. A. B. van Cleave, Trans. Faraday Soc. 34:1174 (1938).

    Google Scholar 

  21. B. McCarroll, J. Chem. Phys. 46:863 (1967).

    Google Scholar 

  22. J. May, L. H. Gomer, and C. C. Chang, J. Chem. Phys. 45:2383 (1966).

    Google Scholar 

  23. J. L. Morrison and J. K. Roberts, Proc. Roy. Soc. (Lond.) A173:1 (1939).

    Google Scholar 

  24. D. O. Hayward and B. M. W. Trapnell, Chemisorption (Butterworths, London, 1964).

    Google Scholar 

  25. B. J. Jody and S. C. Saxena, Phys. Fluids 18:20 (1975).

    Google Scholar 

  26. S. H. P. Chen and S. C. Saxena, in Proceedings, Second National Heat and Mass Transfer Conference (India) (Indian Institute of Technology, Kanpur, 1973), p. A17.

    Google Scholar 

  27. E. H. Kennard, Kinetic Theory of Gases (McGraw-Hill, New York, 1938).

    Google Scholar 

  28. R. E. Harris, J. Chem. Phys. 46:3217 (1967).

    Google Scholar 

  29. H. Y. Wachman, Am. Rocket Soc. J. 32:2 (1962).

    Google Scholar 

  30. V. N. Ageev and N. I. Ionov, Prog. Surf. Sci. 5:1 (1974).

    Google Scholar 

  31. H. W. Wassmuth, Ann. Phys. 7:326 (1971).

    Google Scholar 

  32. C. C. Chang, Surf. Sci. 23:283 (1970).

    Google Scholar 

  33. D. V. Roach and L. B. Thomas, J. Chem. Phys. 39:3395 (1973).

    Google Scholar 

  34. M. J. Lim, Exchange of Energy Between Tungsten at High Temperatures and Gases at Room Temperature, Ph.D. thesis (University of California, Berkeley, 1967), UCRL-17395.

    Google Scholar 

  35. W. Watt and R. Moreton, Royal Aircraft Establishment Rep. RAE-TN-CPM-80-X65- 10984, 1964.

  36. W. Watt, R. Moreton, and L. G. Carpenter, Surf. Sci. 45:238 (1974).

    Google Scholar 

  37. J. Singleton, J. Chem. Phys. 47:73 (1967).

    Google Scholar 

  38. I. Langmuir, J. Am. Chem. Soc. 40:1361 (1918).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For an explanation of symbols, see Nomenclature.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saxena, S.C., Afshar, R. Thermal accommodation coefficient of gases on controlled solid surfaces: Argon-tungsten system. Int J Thermophys 6, 143–163 (1985). https://doi.org/10.1007/BF00500028

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00500028

Key words

Navigation