Influence of ouabain and dihydroouabain on the circular dichroism of cardiac plasmalemmal microsomes

  • Heinz Lüllmann
  • Thies Peters
  • Jürgen Preuner
  • Tomas Rüther


  1. 1.

    The influence of ouabain on the tertiary structure of cardiac plasmalemmal proteins was investigated by means of circular dichroism measurement. Purified plasmalemmal microsomes were obtained by sucrose gradient centrifugation. The CD-spectra of the membranal proteins were shifted to the red and the amplitudes were smaller than those of the same proteins after solubilization.

  2. 2.

    Ouabain induced an increase of the ellipticity bands at 210 and 222 nm of about 50% above the level yielded with microsomes after sonication. At 222 nm ouabain exhibited the half maximum effect at a concentration of 5×10−9 M. The effect could, however, only be exerted if the inside of the microsomes was exposed to ouabain by sonication, thus reflecting the inside-out nature of the plasmalemmal microsomes.

  3. 3.

    The high specificity of the ouabain effect was underlined by the following experiments: a) Dihydroouabain, a much less cardioactive derivative of ouabain proved to be ineffective in corresponding concentrations, b) ouabain had no influence upon the CD spectrum of microsomes derived from cardiac sarcoplasmic reticulum, c) a detergent-like action of ouabain underlying the observed effect can be excluded since highly active tensides, i.e. desoxycholate and dodecylsulfate, only influence the CD spectra at concentrations exceeding 10−3 M, d) electronmicrographs of microsomes exposed to ouabain demonstrated no alteration of either the appearance or size of the microsomes.

  4. 4.

    The magnitude of the observed ouabain effect indicates that a large portion of the membrane-bound proteins is involved. The number of binding sites and their isolated structural alteration induced by ouabain are not sufficient to account quantitatively for the enhanced amplitudes of the CD spectra. This suggests that ouabain evokes structural changes of membrane proteins different from actual binding sites. It seems, therefor highly improbable that changes of the Na-K-ATPase present in the plasmalemmal microsomes are responsible for the observed effect.


Key words

Cardiac Sarcolemma Ouabain Circular Dichroism Conformational Changes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, A. J., Greenfield, N. J., Fasman, G. D.: Circular dichroism and optical rotatory dispersion of proteins and polypeptides. In: Methods in Enzymology, Vol. 27, Enzyme Structure, Part D, C. H. W. Hirs and S. N. Timasheff, Eds., pp. 675–735 New York-London: Academic Press 1973Google Scholar
  2. Besch, H. R., Schwartz, A.: On a mechanism of action of digitals. J. molec. cell. Cardiol. 1, 195–199 (1970)Google Scholar
  3. Caldwell, P. C., Keynes, R. D.: The effect of ouabain on the efflux of sodium from a squid giant axon. J. Physiol. (Lond.) 148, 8P (1959)Google Scholar
  4. Carrier, G. O., Lüllmann, H., Neubauer, L., Peters, T.: The significance of a fast exchanging superficial calcium fraction for the regulation of contractile force in heart muscle. J. molec. cell. Cardiol. 6, 333–347 (1974)Google Scholar
  5. Choules, G. L., Bjorklund, R. F.: Evidence of β-structure in mycoplasma membranes. Circular dichrosim, optical rotatory dispersion, and infrared studies. Biochemistry 9, 4759–4766 (1970)Google Scholar
  6. Coleman, R.: Membrane-bound enzymes and membrane ultrastructure. Biochim. biophys. Acta (Amst.) 300, 1–30 (1973)Google Scholar
  7. Dorman, B. P., Hearst, J. E., Maestre, M. F.: UV absorption and circular dichroism measurement on light scattering biological specimens. Fluorescent cell and related large-angle light detection techniques. In: Methods in Enzymology, Vol. 27, Enzyme Structure, Part D, C. H. W. Hirs and S. N. Timasheff, Eds., pp. 767–796. New York-London: Academic Press 1973Google Scholar
  8. Dorman, B. P., Maestre, M. F.: Experimental differential light-scattering correction to the circular dichroism of bacteriophage T2. Proc. nat. Acad. Sci. (Wash.) 70, 255–259 (1973)Google Scholar
  9. Duysens, L. N. M.: The flattening of the absorption spectrum of suspensions, as compared to that of solutions. Biochim. biophys. Acta (Amst.) 19, 1–12 (1956)Google Scholar
  10. Glaser, M., Simpkins, H., Singer, S. J., Sheetz, M., Chan, S. J.: On the interactions of lipids and proteins in the red blood cell membrane. Proc. nat. Acad. Sci. (Wash.) 65, 721–728 (1970)Google Scholar
  11. Glaser, M., Singer, S. J.: Circular dichroism and the conformation of membrane proteins. Studies with red blood cell membranes. Biochemistry 10, 1780–1787 (1971)Google Scholar
  12. Gordon, D. J., Holzwarth, G.: Optical activity of membrane suspensions: Calculation of artifacts by Mie Scattering Theory. Proc. nat. Acad. Sci. (Wash.) 68, 2365–2369 (1971)Google Scholar
  13. Lee, K. S., Klaus, W.: The subcellular basis for the mechanism of inotropic action of cardiac glycosides. Pharmacol. Rev. 23, 193–261 (1971)Google Scholar
  14. Lenard, J., Singer, S. J.: Protein conformation in cell membrane preparations as studied by optical rotatory dispersion and circular dichrosm. Proc. nat. Acad. Sci. (Wash.) 56, 1828–1835 (1966)Google Scholar
  15. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)Google Scholar
  16. Lüllmann, H., Peters, T.: Cardiac glycosides and contractility. Advanc. Cardiol. 12, 174–182 (1974)Google Scholar
  17. Lüllmann, H., Peters, T.: On the sarcolemmal site of action of cardiac glycosides. International Study Group on Research of Cardiac Metabolism. Quebec 1974 (in press, 1975)Google Scholar
  18. Lüllmann, H., Peters, T., Ravens, U.: Studies on the kinetics of (3H)-ouabain uptake and exchange in the isolated papillary muscle of the guinea-pig. Brit. J. Pharmacol. 53, 99–107 (1975)Google Scholar
  19. Mühlethaler, K.: Struktur der Cytomembranen. Arzneimittel-Forsch. (Drug Res.) 22, 2013–2057 (1972)Google Scholar
  20. Nagia, K., Lindemayer, G. E., Schwartz, A.: Direct evidence for the conformational nature of the Na+−K+-ATPase system: Fluorescence and circular dichrosim studies. Arch. Biochem. Biophys. 139, 252–254 (1970)Google Scholar
  21. Nayler, W. G.: An effect of ouabain on the superficially-located stores of calcium in cardiac muscle cells. J. molec. cell. Cardiol. 5, 101–110 (1973)Google Scholar
  22. Okita, G. T., Richardson, F., Roth-Schechter, B. F.: Dissociation of the positive inotropic action of digitals from inhibition of sodium- and potassium-activated adenosine triphosphatase. J. Pharmacol. exp. Ther. 185, 1–11 (1973)Google Scholar
  23. Papahadjopoulos, D.: Phospholipid membranes as experimental models for biological membranes. In: Biological horizons in surface science. Prince and Sears, Eds., pp. 188–192. New York-London: Academic Press 1973Google Scholar
  24. Peters, T., Raben, R.-H., Wassermann, O.: Evidence for a dissociation between positive inotropic effect and inhibition of the Na+−K+-ATPase by ouabain, cassaine and their alkylating derivatives. Europ. J. Pharmacol. 26, 166–174 (1974)Google Scholar
  25. Preuner, J.: Circular dichroism of a microsomal plasma membrane fraction from guinea-pig ventricular muscle and the influence of ouabain. Naunyn-Schmiedeberg's Arch. Pharmacol. 282, R 76 (1974)Google Scholar
  26. Redwood, W. R., Gibbes, D. C., Thompson, T. E.: Interaction of a solubilized membrane ATPase with lipid bilayer membranes. Biochem. biophys. Acta (Amst.) 31, 10–22 (1973)Google Scholar
  27. Repke, K. R. H.: Über den biochemischen Wirkungsmodus von Digitalis. Klin. Wschr. 42, 157–165 (1964)Google Scholar
  28. Saccomani, G., Spenney, J. G., Urry, D. W., Sachs, G.: Preparation and characterization of plasma membrane of cardiac tissue. J molec. cell. Cardiol. 6, 505–521 (1974)Google Scholar
  29. Schneider, A. S.: Analysis of biological activity spectra of turbid biological suspensions: In: Methods in Enzymology, Vol. 27, Enzyme Structure, Part D C. H. W. Hirs and S. N. Timasheff, Eds., pp. 751–767. New York-London: Academic Press 1973Google Scholar
  30. Schneider, A. S., Tunis-Schneider, M.-J., Rosenheck, K.: Optical activity of biological membranes: Scattering effects and protein conformation. Proc. nat. Acad. Sci. (Wash.) 66, 793–798 (1970)Google Scholar
  31. Urry, D. W.: Protein conformation in biomembranes: Optical rotation and absorption of membrane suspensions. Biochim. biophys. Acta (Amst.) 265, 115–168 (1972)Google Scholar
  32. Urry, D. W., Hinners, T. H., Masotti, L.: Calculation of distorted circular dichroism curves for poly-L-glutamic acid suspensions. Arch. Biochem. Biophys. 137, 214–221 (1970)Google Scholar
  33. Urry, D. W., Krivacic, I.: Diffential scatter of left and right circularly polarized light by optically active particulate systems. Proc. nat. Acad. Sci. (Wash.) 65, 845–852 (1970)Google Scholar
  34. Zwall, R. F. A., Roelofsen, B., Calley, C. P.: Localization of red cell membrane constituents. Biochim. biophys. Acta (Amst.) 300, 159–182 (1973)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Heinz Lüllmann
    • 1
  • Thies Peters
    • 1
  • Jürgen Preuner
    • 1
  • Tomas Rüther
    • 1
  1. 1.Institut für Pharmakologie der Christian-Albrechts-UniversitätKielGermany

Personalised recommendations