Skip to main content
Log in

Cell recovery by continuous flotation

  • Biotechnology
  • Published:
European journal of applied microbiology and biotechnology Aims and scope Submit manuscript

Summary

Cell recovery by means of continuous flotation of the Hansenula polymorpha cultivation medium without additives was investigated as a function of the cultivation conditions as well as of the flotation equipment construction and flotation operational parameters. The cell enrichment and separation is improved at high liquid residence times, high aeration rates, small bubble sizes, increasing height of the aerated column, and diameter of the foam column. Increasing cell age and cultivation with nitrogen limitation reduce the cell separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CP :

cell mass concentration in medium g·l−1

CR :

cell mass concentration in residue g·l−1

CS :

cell mass concentration in foam liquid g·l−1

V :

equilibrium foam volume cm3

V:

gas flow rate through the aerated liquid column cm3·s−1

VF :

feed rate to the flotation column ml/min

Σ 1 :

V S/V foaminess s

τ:

mean liquid residence time in the column s

References

  • Bikerman JJ (1938) The unit of foaminess. Trans Farad Soc 34:634–638

    Google Scholar 

  • Boyles WA, Lincoln RE (1958) Separation and concentration of bacterial spores and vegetative cells by foam flotation. Appl Microbiol 6:327–334

    Google Scholar 

  • Bretz HW, Wang SL, Grieves RB (1966) Variables affecting the foam separation of Escherichia coli. Appl Microbiol 15:778–783

    Google Scholar 

  • Buchholz G, Luttmann R, Zakrzewski W, Schügerl K (1981) Cultivation of Hansenula polymorpha in tower loop reactors. Eur J Appl Microbiol Biotechnol 11:89–96

    Google Scholar 

  • Bumbullis W, Kalischewski K, Schügerl K (1979) Foam behavior of biological media II. Salt effects. Eur J Appl Microbiol Biotechnol 7:147–154

    Google Scholar 

  • Desmaison GU, Schügerl K (1980) Mikroflotation der Hefe Hansenula polymorpha. Chem Ing Tech 52:885

    Google Scholar 

  • Dognon A, Dumonte A (1941) Concentration et séparation des microorganismes par moussage. CR Soc Biol 135:884–887

    Google Scholar 

  • Dognon A (1942) Concentration et séparation par mousses. Quelque applications chimiques et bactériologiques. Acta Scand Ind 932:157–172

    Google Scholar 

  • Egli T (1980) Wachstum von Methanol assimilierenden Hefen. Diss. ETH Zürich, Nr. 6538

  • Gaudin AM, Mular AL, O'Connor RF (1960) Separation of microorganism by flotation. I. Development and evaluation of assay procedures. Appl Microbiol 8, pp 84–90. II. Flotation of spores of Bacillus subtilis var niger, pp 91–97.

    Google Scholar 

  • Grieves RB, Wang SL (1966a) Foam separation of Escherichia coli with a cationic surfactant. Biotechnol Bioeng 8:323

    Google Scholar 

  • Grieves RB, Wang SL (1966b) Foam separation of Pseudomonas fluorescens and Bacillus subtilis var niger. Appl Microbiol 15:76–81

    Google Scholar 

  • Grieves RB, Wang SL (1967) Foam separation of bacteria with a cationic surfactant. Biotechnol Bioeng 9:187–194

    Google Scholar 

  • Go TL (1975) Foam fractionation of microbiological entities. (DAI 37 B 2673:76–26, 965). Diss. Southern Illinois Univ. Dept. of Microbiol.

    Google Scholar 

  • Hopper SH, McCowen MC (1952) A flotation process for water purification. J Am Water Works Assoc 44:719–726

    Google Scholar 

  • Kalyuzhny MV, Petrushko GM, Novikova GP (1965) Flocculation of Candida utilis and Candida tropicalis yeast cells and its relation to flotation. Microbiologiya 34:918–924

    Google Scholar 

  • Levin GV, Clendenning JR, Gibor A, Bogar FD (1962) Harvesting of algae by froth flotation. Appl Microbiol 10:169–175

    Google Scholar 

  • Ouchi K, Nunokawa Y (1973) Nonfoaming mutants of sake yeast: Their physico-chemical characteristics. J Ferment Technol 51:85–95

    Google Scholar 

  • Rubin AJ, Cassel EA, Henderson O, Johnson JD, Lamb JC (1966) Microflotation: New low gas-flow rate foam separation technique for bacteria and algae. Biotechnol Bioeng 8:135–151

    Google Scholar 

  • Rubin AJ (1968) Microflotation: Coagulation and foam separation of Aerobacter aerogenes. Biotechnol Bioeng 10:89

    Google Scholar 

  • Viehweg H (1982) Flotation von Hansenula polymorpha aus dem Kulturmedium. Diss., University of Hannover

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viehweg, H., Schügerl, K. Cell recovery by continuous flotation. European J. Appl. Microbiol. Biotechnol. 17, 96–102 (1983). https://doi.org/10.1007/BF00499858

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00499858

Keywords

Navigation