Advertisement

Biochemical Genetics

, Volume 22, Issue 11–12, pp 1047–1063 | Cite as

The Pk-3 gene determines both the heart, M1, and the kidney, M2, pyruvate kinase isozymes in the mouse; and a simple electrophoretic method for separating phosphoglucomutase-3

  • Josephine Peters
  • Sandra J. Andrews
Article

Abstract

We have found that in mice carrying Pk-3 r , an allele leading to loss of activity of kidney pyruvate kinase, the activity of heart pyruvate kinase is also diminished. Electrophoretic studies on tissues from mice carrying Pk-3 r and/or Pk-3 b , an allele determining an electrophoretically detectable variant, show that Pk-3 affects the expression of both the heart, M1, and the kidney, M2, pyruvate kinase isozymes. These results, together with linkage data, indicate that both isozymes are determined by the same structural gene, Pk-3. We also report a simple method for separating phosphoglucomutase-3 (PGM-3) by electrophoresis on cellulose acetate plates.

Key words

pyruvate kinase Mus musculus linkage phosphoglucomutase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amara, S. G., Jonas, V., Rosenfeld, M. G., Ong, E. S., and Evans, R. M. (1982). Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298240.Google Scholar
  2. Bigley, R. H., and Kohler, R. S. (1968). Liver pyruvate kinase isozymes in a PK deficient patient. Ann. Hum. Genet. 31383.Google Scholar
  3. Crabtree, G. R., and Kant, J. A. (1982). Organization of the rat γ-fibrinogen gene: Alternative mRNA splice patterns produce the γA and γB (γ1) chains of fibrinogen. Cell 31159.Google Scholar
  4. Early, P., Rogers, J., Davis, M., Calame, K., Bond, M., Wall, R., and Hood, L. (1980). Two mRNAs can be produced from a single immunoglobulin μ gene by alternative RNA processing pathways. Cell 20313.Google Scholar
  5. Eicher, E. M., Taylor, B. A., Leighton, S. C., and Womack, J. E. (1980). A serum protein polymorphism determinant on chromosome 9 of Mus musculus. Mol. Gen. Genet. 177571.Google Scholar
  6. Hance, A. J., Lee, J., and Feitelson, M. (1982). The M1 and M2 isozymes of pyruvate kinase are the products of the same gene. Biochem. Biophys. Res. Commun. 106492.Google Scholar
  7. Harkins, R. N., Black, J. A., and Rittenberg, M. B. (1977). M2 isozyme of pyruvate kinase from human kidney as the product of a separate gene. Its purification and characterization. Biochemistry 163831.Google Scholar
  8. Harris, H., and Hopkinson, D. A. (1976). Handbook of Enzyme Electrophoresis in Human Genetics North-Holland, Amsterdam.Google Scholar
  9. Hutton, J. J., and Roderick, T. H. (1970). Linkage analyses using biochemical variants in mice. III. Linkage relationships of elevan biochemical markers. Biochem. Genet. 4339.Google Scholar
  10. Ibsen, K. H. (1977). Interrelationships and functions of the pyruvate kinase isozymes and their variant forms: A review. Cancer Res. 37341.Google Scholar
  11. Ibsen, K. H., Trippet, P., and Basabe, J. (1975). Properties of rat pyruvate kinase isozymes. In Markert, C. L. (ed.), Isozymes, Vol. 1 Academic Press, New York, pp. 543–557.Google Scholar
  12. Ibsen, K. H., Chin, R. H.- C., Park, H. R., Sanders, D. A., Roy, S., Garratt, K. N., and Mueller, M. K. (1981). Purification and properties of mouse pyruvate kinases K and M and of a modified K subunit. Biochemistry 201497.Google Scholar
  13. Imamura, K., Tanaka, T., Nishima, T., Nakashima, K., and Miwa, W. (1973). Studies on pyruvate kinase (PK) deficiency. II. Electrophoretic, kinetic and immunological studies on pyruvate kinase of erythrocytes and other tissues. J. Biochem. 741165.Google Scholar
  14. Johnson, F. M., Chasalow, F., Anderson, G., MacDougal, P., Hendren, R. W., and Lewis, S. E. (1981a). A variation in mouse kidney pyruvate kinase activity determined by a mutant gene on chromosome 9. Genet. Res. 37123.Google Scholar
  15. Johnson, F. M., Hendren, R. W., Chasalow, F., Barnett, L. B., and Lewis, S. E. (1981b). A null mutation at the mouse phosphoglucomutase-1 locus and a new locus Pgm-3. Biochem. Genet. 19599.Google Scholar
  16. Kahn, A., Marie, J., Galand, H., and Sprengers, E. D. (1978). The genetic system of the L-type pyruvate kinase forms in man. Subunit structure, interrelation and kinetic characteristics of the pyruvate kinase enzymes from erythrocytes and liver. Biochim. Biophys. Acta. 52359.Google Scholar
  17. King, C. R., and Piatigorsky, J. (1983). Alternative RNA splicing of the murine α-A-crystallin gene: Protein-coding information within an intron. Cell 32707.Google Scholar
  18. Lalley, P. A., Minna, J. D., and Francke, U. (1978). Conservation of autosomal gene synteny groups in mouse and man. Nature 274160.Google Scholar
  19. Levin, J. J., Daegelen, D., Meienhofer, M.- C., Dreyfus, J.- C., and Kahn, A. (1982). Two different species of messenger RNAs specify synthesis of M1 and M2 pyruvate kinase subunits. Biochim. Biophys. Acta 69977.Google Scholar
  20. Loutit, J. F., Peters, J., and Marshall, M. J. (1981). Colony forming units and haematopoietic stem cells in osteoclastopoiesis. Metab. Bone Dis. Rel. Res. 3131.Google Scholar
  21. Marie, J., Kahn, A., and Boivin, P. (1976). Pyruvate kinase isozymes in man. 1. M type isozymes in adult and foetal tissues, electrofocusing and immunological studies. Hum. Genet. 3135.Google Scholar
  22. Marie, J., Kahn, A., and Boivin, P. (1977). Human erythrocyte pyruvate kinase. Total purification and evidence for its antigenic identify with L-type enzyme. Biochim. Biophys. Acta 48196.Google Scholar
  23. Marie, J., Simon, M.- P., Dreyfus, J.- C., and Kahn, A. (1981). One gene, but two messenger RNAs encode liver and red cell L1 pyruvate kinase subunits. Nature 29270.Google Scholar
  24. Meera Khan, P. (1971). Enzyme electrophoresis on cellulose acetate gel: Zymogram patterns in man-mouse and man-Chinese hamster somatic cell hybrids. Arch. Biochem. Biophys. 145470.Google Scholar
  25. Moore, K. J., and Bulfield, G. (1981). An allele (Pk-1 b) from wild-caught mice that affects the activity and kinetics of erythrocyte and liver pyruvate kinase. Biochem. Genet. 19771.Google Scholar
  26. Nadeau, J. H., Kömpf, J., Siebert, G., and Taylor, B. A. (1981). Linkage of Pgm-3 in the house mouse and homologies of three phosphoglucomutase loci in mouse and man. Biochem. Genet. 19465.Google Scholar
  27. Nakashima, K., Miwa, S., Oda, S., Tanaka, T., Imamura, K., and Nishina, T. (1974). Electrophoretic and kinetic studies of mutant erythrocyte pyruvate kinases. Blood 43537.Google Scholar
  28. Noguchi, T., and Tanaka, T. (1982). The M1 and M2 subunits of rat pyruvate kinase are encoded by different messenger RNAs. J. Biol. Chem. 2571110.Google Scholar
  29. Paigen, K. (1979). Acid hydrolases as models of genetic control. Annu. Rev. Genet. 13417.Google Scholar
  30. Peters, J., Nash, H. R., Eicher, E. M., and Bulfield, G. (1981). Polymorphism of kidney pyruvate kinase is determined by a gene, Pk-3, on chromosome 9. Biochem. Genet. 19757.Google Scholar
  31. Rogers, J., Early, P., Carter, C., Calame, K., Bond, M., Hood, L., and Wall, R. (1980). Two mRNAs with different 3′ ends encode membrane-bound and secreted forms of immunoglobulin μ chain. Cell 20303.Google Scholar
  32. Saheki, S., Harada, K., Sanno, Y., and Tanaka T. (1978). Hybrid isozymes of rat pyruvate kinase. Their subunit structure and development changes in the liver. Biochem. Biophys. Acta. 526116.Google Scholar
  33. Saheki, S., Saheki, K., and Tanaka, T. (1982a). Peptide structures of pyruvate kinase isozymes. 1. Comparison of the four pyruvate kinase isozymes of the rat. Biochim. Biophys. Acta 704484.Google Scholar
  34. Saheki, S., Saheki, K., and Tanaka, T. (1982b). Peptide structures of pyruvate kinase isozymes. 2. Origins of types M1 and M2 isozymes suggested from species-variations in their peptide maps. Biochim. Biophys. Acta 704494.Google Scholar
  35. Schibler, U., Hagenbüchle, O., Wellauer, P. K., and Pittet, A. C. (1983). Two promoters of different strengths control the transcription of the mouse alpha-amylase gene Amy-1 a in the parotid gland and the liver. Cell 33501.Google Scholar
  36. Shinohara, K., Miwa, S., Nakashima, K., Oda, E., Kageoka, T., and Tsujino, G. (1976). A new PK variant (PK Osaka) demonstrated by partial purification and condensation. Am. J. Hum. Genet. 28474.Google Scholar
  37. Simon, M.-P., Marie, J., Bertrand, O., and Kahn, A. (1982). Molecular organization of human L1 and L pyruvate kinases. Biochim. Biophys. Acta 7091.Google Scholar
  38. Strandholm, J. J., Dyson, R. D., and Cardenas, J. M. (1976). Bovine pyruvate kinase isozymes and hybrid isozymes. Electrophoretic studies and tissue distribution. Archs. Biochem. Biophys. 173125.Google Scholar
  39. Susor, W. A., and Rutter, W. J. (1968). Some distinctive properties of pyruvate kinase purified from rat liver. Biochem. Biophys. Res. Commun. 3014.Google Scholar
  40. Susor, W. A., and Rutter, W. J. (1971). Method for the detection of pyruvate kinase, aldolase, and other pyridine nucleotide linked enzyme activities after electrophoresis. Anal. Biochem. 43147.Google Scholar
  41. Young, R. A., Hagenbüchle, O., and Schibler, U. (1981). A single mouse α-amylase gene specifies two different tissue-specific mRNAs. Cell 23451.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • Josephine Peters
    • 1
  • Sandra J. Andrews
    • 1
  1. 1.MRC Radiobiology Unit, HarwellDidcotUK

Personalised recommendations