Biochemical Genetics

, Volume 22, Issue 11–12, pp 1037–1046 | Cite as

A regulatory locus, Hdc-e, determines the response of mouse kidney histidine decarboxylase to estrogen

  • S. A. M. Martin
  • Grahame Bulfield
Article

Abstract

Levels of histidine decarboxylase (HDC; EC 4.1.1.22) activity in female mouse kidney are modulated by estrogen (administered as implanted pellets). In some inbred strains HDC activity is induced by estrogen, while in others the enzyme is repressed. Immunoprecipitation with an anti-fetal rat HDC antiserum has shown that induction and repression of HDC levels are due to changes in enzyme concentration. Segregation analysis has identified a single additively inherited regulatory locus, Hdc-e, which determines the response to estrogen. The allele Hdc-e b (C57BL/10) determines induction, and the allele Hdc-e d (DBA/2) determines repression. Preliminary evidence indicates cosegregation of Hdc-e alleles with alleles of another regulatory locus, Hdc-c (determining kidney HDC concentration), and therefore putative linkage of Hdc-e with the HDC gene complex on chromosome 2. This is the first report of a mammalian regulatory gene controlling two opposite mechanisms, induction and repression in response to a single effector.

Key words

mouse kidney histidine decarboxylase regulatory gene estrogen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger, F. G., and Paigen, K. (1979). Cis-active control of mouse β-galactosidase biosynthesis by a systemic regulatory locus. Nature 282314.Google Scholar
  2. Bloor, J. H., Meisler, M. H., and Nielson, J. T. (1981). Genetic determination of amylase synthesis in the mouse. J. Biol. Chem. 256373.Google Scholar
  3. Breen, G. A., Lusis, A. J., and Paigen, K. (1977). Linkage of genetic determinants for mouse β-galactosidase electrophoresis and activity. Genetics 8573.Google Scholar
  4. Bulfield, G., and Nahum, A. (1978). Effect of mouse mutants testicular feminization and sex reversal on hormone-mediated induction and repression of enzymes. Biochem. Genet. 16743.Google Scholar
  5. Crawford, J. P. (1973). Mouse Kidney Aromatic L-Amino Acid Decarboxylase and Histidine Decarboxylase, Ph.D. thesis, University of California.Google Scholar
  6. Engelsberg, E., Squires, C., and Meronk, F., Jr. (1969). The L-arabinose operon in Escherichia coli B/r: A genetic demonstration of two functional states of the product of a regulator gene. Proc. Natl. Acad. Sci. 621100.Google Scholar
  7. Fukui, H., Watanabe, T., and Wada, H. (1981). Immunochemical cross reactivity of the antibody elicited against L-histidine decarboxylase purified from the whole bodies of fetal rats with the enzyme from rat brain. Biochem. Biophys. Res. Commun. 93333.Google Scholar
  8. Grahn, B., Henningsson, S. S. G., Kahlson, G., and Rosengren, E. (1973). Alterations in the activities of ornithine and histidine decarboxylases provoked by testosterone in mice. Br. J. Pharmacol. 48113.Google Scholar
  9. Henningsson, S. S. G., and Rosengren, E. (1972). Alterations of histamine metabolism after injections of sex hormones in mice. Br. J. Pharmacol. 44517.Google Scholar
  10. Lusis, A. J., Chapman, V. M., Wangenstein, R. W., and Paigen, K. (1983). Trans-acting temporal locus within the β-glucuronidase gene complex. Proc. Natl. Acad. Sci. 804398.Google Scholar
  11. Lyon, M. F. (1981). Rules and guidelines for gene nomenclature In Green, M. C. (ed.), Genetic Variants and Strains of the Laboratory Mouse Gustav Fischer Verlag, Stuttgart, New York, pp. 1–7.Google Scholar
  12. Martin, S. A. M., and Bulfield, G. (1984). A structural gene (Hdc-s) for mouse kidney histidine decarboxylase. Biochem. Genet. 22645.Google Scholar
  13. Martin, S. A. M., Taylor, B. A., Watanabe, T., and Bulfield, G. (1984). Histidine decarboxylase phenotypes of inbred mouse strains: A regulatory locus (Hdc) determines kidney enzyme concentration. Biochem. Genet. 22305.Google Scholar
  14. Nielsen, J. T., and Sick, K. (1975). Genetic polymorphism of amylase isoenzymes in feral population of the house mouse. Hereditas 79279.Google Scholar
  15. Rosengren, E. (1966). Histamine metabolism in pregnancy. Acta. Univ. Lund. II No. 8, pp. 1–26.Google Scholar
  16. Paigen, K. (1979). Acid hydrolases as models of genetic control. Annu. Rev. Genet. 13417.Google Scholar
  17. Paigen, K., Labarca, C., and Watson, G. (1979). A regulatory locus for mouse β-glucuronidase induction, Gur, controls messenger RNA activity. Science 203554.Google Scholar
  18. Piccini, N., Knopf, J. L., and Gross, K. W. (1982). A DNA polymorphism, consistent with gene duplication, correlates with high renin levels in the mouse submaxillary gland. Cell 30205.Google Scholar
  19. Schibler, U., Tosi, M., Pittet, A.-C., Fabiani, L., and Wellauer, P. K. (1980). Tissue-specific expression of mouse α-amylase genes. J. Mol. Biol. 14293.Google Scholar
  20. Swank, R. T., Paigen, K., Davey, R., Chapman, V., Labarca, C. Watson, G., Ganschow, R., Brandt, E. J., and Novak, E. (1978). Genetic regulation of mammalian glucuronidase. Rec. Prog. Horm. Res. 34401.Google Scholar
  21. Wilson, C. M., Cherry, M., Taylor, B. A., and Wilson, J. D. (1981). Genetic and endocrine control of renin activity in the submaxillary gland of the mouse. Biochem. Genet. 19509.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • S. A. M. Martin
    • 1
  • Grahame Bulfield
    • 2
  1. 1.Department of GeneticsEdinburgh UniversityEdinburghUK
  2. 2.Genetics GroupAgricultural & Food Research Council's Poultry Research CentreRoslinUK

Personalised recommendations