The translocation of mercury and cadmium into the fruiting bodies of six higher fungi

A comparative study of species specificity in five lignocellulolytic fungi and the cultivated mushroom Agaricus bisporus
  • H. Brunnert
  • F. Zadražil
Environmental Microbiology

Summary

The species- and metal-specific translocation of cadmium and mercury from the substrate to the fruiting bodies of six higher fungi has been investigated.

Species Specific Translocation. The six species differed greatly in their ability to translocate cadmium and mercury. The highest translocation rates displayed Pleurotus flabellatus: 75.0% of the applied cadmium and 38.5% of the mercury could be recovered from the fruiting bodies. High translocation rates were also found with Pleurotus ostreatus (19.3 and 38.5% for cadmium and mercury, respectively). This compares with only 1.27% of cadmium and 8.42% of mercury in Agaricus bisporus or 3.71% of cadmium and 3.63% of mercury in Pleurotus sajor caju.

For Agaricus bisporus it was shown that there was proportionality of translocation over a 1∶10 concentration range.

Translocation in Consecutive Crops. In four out of six species there was a tendency towards higher heavy metal contents in later crops, when calculated on the basis of μg/g of dry fruiting body.

Metal Specific Translocation. In four out of six species (Agaricus bisporus, Pleurotus ostreatus, Flammulina velutipes and Agrocybe aegerita) more mercury than cadmium was translocated into the fruiting bodies, the Cd/Hg ratios being 6.6, 2.0, 5.6, and 3.2, respectively. In Pleurotus sajor caju the ratio was about 1. Only in Pleurotus flabellatus more cadmium than mercury was found in the fruiting bodies (Cd/Hg ratio 0.65).

Keywords

Mercury Cadmium Fruiting Body Heavy Metal Content Pleurotus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aichberger K, Horak O (1975) Quecksilberaufnahme von Champignons (Agaricus bisporus) aus künstlich angereichertem Substrat. Bodenkultur 21:8–14Google Scholar
  2. Allen RO, Steinnes E (1978) Concentrations of some potentially toxic metals and other trace elements in wild mushrooms from Norway. Chemosphere 4:371–378Google Scholar
  3. Alsen C, Braatz G, Kruse H (1977) Schwermetallgehalt in eßbaren Pilzen. Zink, Cadmium, Quecksilber und Blei. Oeff Gesundheitswes 39:780–789Google Scholar
  4. Brunnert H, Zadražil F (1979) The cycling of cadmium and mercury between substrate and fruiting bodies of Agrocybe aegerita (a fungal model system). Eur J Appl Microbiol Biotechnol 6:389–395Google Scholar
  5. Brunnert H, Zadražil F (1980) Translocation of cadmium and mercury in straw columns colonized by the fungus Pleurotus cornucopiae Paul ex Fr. Eur J Appl Microbiol Biotechnol 10:145–154Google Scholar
  6. Brunnert H, Zadražil F (1981) Translocation of cadmium and mercury into the fruiting bodies of Agrocybe aegerita in a model system using agar platelets as substrate. Eur J Appl Microbiol Biotechnol 12:179–182Google Scholar
  7. Byrne AR, Ravnik V, Kosta L (1976) Trace element concentrations in higher fungi. Sci Total Environ 6:65–78Google Scholar
  8. Collet P (1977) Die Bestimmung von Schwermetallspuren in Lebensmitteln mit Hilfe der Inverspolarographie. II. Über den Gehalt von Blei, Cadmium und Kupfer in Speisepilzen. Dtsch Lebensm Rundsch 73:75–82Google Scholar
  9. Domsch KH, Grabbe K, Fleckenstein J (1976) Schwermetallgehalte im Kultursubstrat und Erntegut des Champignons, Agaricus bisporus (Lange) Singer, beim Ensatz von Müllklärschlammkompost. Z Pflanzenernaehr Bodenk 4:487–510Google Scholar
  10. Enke M, Matschiner H, Achtzehn MK (1977) Schwermetallanreicherungen in Pilzen. Nahrung 21:331–334Google Scholar
  11. Enke M, Roschig M, Matschiner H, Achtzehn MK (1979) Zur Blei-, Cadmium- und Quecksilber-Aufnahme in Kulturchampignons. Nahrung 23:731–737Google Scholar
  12. Fathi M, Lorenz H (1980) Bindungsformen von Quecksilber, Cadmium und Blei in Biotopen, Verhalten in der Nahrungskette und Vorkommen in Nahrungsmitteln. Metabolismus in Pflanze, Tier und Mensch. Eine Literaturstudie. Zebs Bericht 1/1980. Dietrich Reimer VerlagGoogle Scholar
  13. Fleckenstein J (1979) Artspezifische und selektive Affinität von Wildpilzen zu Schwermetallen im Ökosystem. Mitteilg Dtsch Bodenkundl Ges 19:451Google Scholar
  14. Fleckenstein J, Grabbe K (1981) Quantitative Aufnahme von Schwermetallen aus kontaminierten Substraten des Pilzanbaus durch Agaricus bisporus. Mushroom Sci XI:35–46Google Scholar
  15. Frank R, Rainforth JR, Sangster D (1974) Mushroom production in respect of mercury content. Can J Platn Sci 54:529–534Google Scholar
  16. Hasuk A (1975) Untersuchungen über die Aufnahme von Kupfer, Zink, Blei, Cadmium und Quecksilber durch den Champignon. Müll und Abfall 7:172–176Google Scholar
  17. Laaksovirta K, Alakuijala P (1978) Lead, cadmium and zinc contents of fungi in the parks of Helsinki. Ann Bot Fenn 15:253–257Google Scholar
  18. Laub E, Waligorski F, Woller R, Lichtenthal H (1977) Über die Cadmiumanreicherung in Champignons. Z Lebensm Unters Forsch 164:269–271Google Scholar
  19. Lorenz H, Kossen MT, Käferstein FK (1978) Blei-, Cadmium- und Quecksilbergehalte in Speisepilzen. Bundesgesundhbl 21:202–204Google Scholar
  20. Meisch H-U, Schmitt JA, Reinle W (1977) Schwermetalle in höheren Pilzen. Cadmium, Zink und Kupfer. Z Naturforsch 320:172–181Google Scholar
  21. Mowitz J (1980) Höga halter kadmium i vildväxende, svenska champinjoner. Var Föda 32:270–278Google Scholar
  22. Qinche JP (1976) La pollution mercurielle de diverses espèces de champignons. Rev Suisse Agric 8:143–148Google Scholar
  23. Schellmann B, Opitz O (1978) Cadmium-, Blei- und Kupferkonzentrationen in Wiesenpilzen. Lebensmittelchemie u Gerichtl Chemie 32:97–98Google Scholar
  24. Seeger R, Nützel R (1976) Quecksilbergehalt der Pilze. Z Lebensm Unters Forsch 160:303–312Google Scholar
  25. Seeger R (1977) Quecksilber in jungen und alten Pilzen und in Pilzsporen. Dtsch Lebensmittel Rundsch 73:160–162Google Scholar
  26. Seeger R, Nützel R, Dill U (1978) Cadmium in Pilzen. Z Lebensm Unters Forsch 166:23–34Google Scholar
  27. Seeger R (1982) Toxische Schwermetalle in Pilzen. Dtsch Apoth Ztg 122:1835–1844Google Scholar
  28. Stegnar P, Kosta L, Byrne AR, Ravnik V (1973) The accumulation of mercury and the occurence of methylmercury in some fungi. Chemosphere 2:57–63Google Scholar
  29. Stelte W, Wolf U, Wunderle K (1982) Über den Gehalt an toxischen Schwermetallen in Zuchtchampignons. Champignon 254:15–23Google Scholar
  30. Stijve T, Roschnik R (1974) Mercury and methyl mercury content of different species of fungi. Trav Chim Aliment Hyg 65:209–220Google Scholar
  31. Stijve T, Besson R (1976) Mercury, cadmium, lead and selenium content of muschroom species belonging to the genus Agaricus. Chemosphere 2:151–158Google Scholar
  32. Tyler G (1982a) Accumulation and exclusion of metals in Collybia peronata and Amanita rubescens. Trans Br Mycol Soc 79:239–245Google Scholar
  33. Tyler G (1982b) Metal accumulation by wood decaying fungi. Chemosphere 11:1141–1146Google Scholar
  34. Woidich H, Pfannhauser W (1975) Der Quecksilbergehalt von Speisepilzen. Dtsch Lebensm Rundsch 71:177–178Google Scholar
  35. Zadražil F (1980) Conversion of different plant wastes into feed by basidiomycetes. Eur J Appl Microbiol Biotechnol 9:243–248Google Scholar
  36. Zadražil F, Brunnert H (1982) Solid state fermentation of lignocellulose containing plant residues with Sporotrichum pulverulentum Nov. and Dichomitus squalens (Karst.) Reid. Eur J Appl Microbiol Biotechnol 17:45–51Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • H. Brunnert
    • 1
  • F. Zadražil
    • 2
  1. 1.Institut für Produktions- und ÖkotoxikologieBundesforschungsanstalt für LandwirtschaftBraunschweigFederal Republic of Germany
  2. 2.Institut für BodenbiologieBundesforschungsanstalt für LandwirtschaftBraunschweigFederal Republic of Germany

Personalised recommendations