Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 295, Issue 2, pp 123–126 | Cite as

Inactivation and excretion of dopamine by the cat kidney in vivo

  • Winfried Stöcker
  • Klaus Hempel


14C-Dopamine at a dose between 0.16 and 400 nmol per kg body weight was injected locally into the renal artery and urinary excretion of the label was followed for a period of up to 75 min. During the first renal passage the injected kidney excreted 28.2±8.3% (n=8) of the activity applied. As shown by column chromatography the 14C-activity in urine was mainly present as 3,4-dihydroxyphenyl acetic acid (40%), homovanillic acid (15%) and dopamine (app. 20%). Excretion rate and the pattern of dopamine metabolites in urine was independent of the administered dose. Thus, the excretion of dopamine by the cat kidney is linked to an inactivation by the kidney enzymes MAO and COMT. From the literature it is known that in dog and chicken kidney catecholamines are not metabolized to such a large extent during renal excretion.

Key words

Dopamine Kidney Metabolism 







3,4-dihydroxyphenyl acetic acid


3,4-dihydroxyphenyl ethanol


homovanillic acid


3-methoxy-4-hydroxyphenyl ethanol




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bernheimer, H., Birkmayer, W., Hornykiewicz, O., Jellinger, K., Seitelberger, F.: Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J. neurol. Sci. 20, 415–455 (1973)Google Scholar
  2. Goldberg, L. I., Sonneville, P. F., McNay, J. L.: An investigation of the structural requirements for dopamine-like renal vasodilation: Phenylethyl-amines and apomorphine. J. Pharmacol. exp. Ther. 163, 188–197 (1968)Google Scholar
  3. Goodall, M. C. C., Alton, H.: Metabolism of 3-hydroxytyramine (dopamine) in human subjects. Biochem. Pharmacol. 17, 905–914 (1968)Google Scholar
  4. Hempel, K., Lange, H. W., Kayser, E. F., Röger, L., Hennemann, H., Heidland, A.: Role of 0-methylation in the renal excretion of catecholamines in dogs. Naunyn-Schmiedeberg's Arch. Pharmacol. 277, 373–386 (1973)Google Scholar
  5. Hempel, K., Lange, H. W., Lustenberger, N.: Die Pyridoxal-Methode: Ein neues Verfahren zur fluorometrischen Analyse von Aminosäuren und Aminen im Picomol-Maßstab. Instrument u. Forsch. 2, 13–22 (1974)Google Scholar
  6. Hempel, K., Männl, H. F. K.: Quantitative Analyse der Catecholamin-Biosynthese des Nebennierenmarks in vivo und Ruhesekretion neugebildeter Amine unter besonderer Berücksichtigung des Dopamins. Naunyn-Schmiedeberg's Arch. Pharmak. 264, 363–388 (1969)Google Scholar
  7. Lange, H. W., Männl, H. F. K., Hempel, K.: Quantitative and rapid fractionation of acidic and neutral catabolites from catecholamines by ion-exchange chromatography. Analyt. Biochem. 38, 98–104 (1970)Google Scholar
  8. McDonald, R. H., Goldberg, L. I., McNay, J. L., Tuttle, E. P.: Effects of dopamine in man: Augmentation of sodium excretion, glomerular filtration rate and renal plasma flow. J. clin. Invest. 43, 1116–1124 (1964)Google Scholar
  9. McNay, R. H., Goldberg, L. I.: Comparison of the effects of dopamine, isoproterenol, norepinephrine and bradykinin on canin renal and femoral blood flow. J. Pharmacol. exp. Ther. 151, 23–31 (1966)Google Scholar
  10. Rennick, B. R., Pryor, M., Basch, B. G.: Urinary metabolites of epinephrine and norepinephrine in the chicken. J. Pharmacol. exp. Ther. 148, 270–276 (1965)Google Scholar
  11. Sperber, J.: New method for the study of renal tubular excretion. Nature (Lond.) 158, 131 (1946)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Winfried Stöcker
    • 1
  • Klaus Hempel
    • 1
  1. 1.Institut für Medizinische Strahlenkunde der UniversitätWürzburgGermany

Personalised recommendations