Characterization and genetic control of the prolamins of Haynaldia villosa: Relationship to cultivated species of the Triticeae (rye, wheat, and barley)

Abstract

Haynaldia villosa is a wild grass of the tribe Triticeae, other members of which include the cultivated cereals barley, rye, and wheat. We have made an electrophoretic and chemical characterization of the major seed storage proteins (prolamins) of H. villosa and determined the chromosomal locations of the structural genes for some components using the available wheat/H. villosa chromosome addition lines. As in wheat, barley, and rye, groups of high molecular weight (polymeric), sulfur-poor (monomeric), and sulfur-rich (monomeric γ-type and polymeric) prolamins can be recognized. Most of the components are encoded by genes on chromosome 1 Ha, which is homologous with the chromosomes controlling many of the prolamins in wheat and rye and all of those in barley. In addition, H. villosa also contains α-type sulfur-rich prolamins, previously detected only in wheat and its close relatives. These may be encoded by genes on chromosome 6Ha, which is homologous with the group 6 chromosomes that control the α-type gliadins of wheat. Despite the proposed close relationship between Haynaldia and ryes, no evidence was found for the presence of proteins closely related to the M r 75,000 γ-secalins which are characteristic of wild and cultivated species of Secale.

This is a preview of subscription content, access via your institution.

References

  1. Autran, J.-C., Lew, E. J.-L., Nimmo, C. C., and Kasarda, D. D. (1979). N-Terminal amino acid sequencing of prolamins from wheat and related species, Nature (London) 282527.

    Google Scholar 

  2. Bartels, D., Altosaar, I., Harberd, N. P., Barker, R. F., and Thompson, R. D. (1986). Molecular analysis of γ-gliadin gene families at the complex Gli-1 locus of bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 72845.

    Google Scholar 

  3. Baum, B. R. (1977). Taxonomy of the tribe Triticeae (Poaceae) using various numerical techniques I. Can. J. Bot. 551712.

    Google Scholar 

  4. Baum, B. R. (1978a). Taxonomy of the tribe Triticeae (Poaceae) using various numerical techniques. II. Can. J. Bot. 5627.

    Google Scholar 

  5. Baum, B. R. (1978b). Taxonomy of the tribe Triticeae (Poaceae) using various numerical techniques. III. Can. J. Bot. 56374.

    Google Scholar 

  6. Baum, B. R. (1978c). Genetic relationships in Triticeae based on computations of Jardine & Sibson Bk clusters. Can. J. Bot. 562948.

    Google Scholar 

  7. Bietz, J. A., and Wall, J. S. (1980). Identity of high molecular weight gliadin and ethanol-soluble glutenin subunits of wheat: Relation to gluten structure. Cereal Chem. 57415.

    Google Scholar 

  8. Bietz, J. A., Huebner, F. R., Sandersen, J. E., and Wall, J. S. (1977). Wheat gliadin homology revealed through N-terminal amino acid sequence analysis. Cereal Chem. 541070.

    Google Scholar 

  9. Brandt, A., Montembault, A., Cameron-Mills, V., and Rasmussen, S. K. (1985). Primary structure of a B1 hordein gene from barley. Carlsberg Res. Commun. 50333.

    Google Scholar 

  10. Bunce, N., White, R. P., and Shewry, P. R. (1985). Variation in estimates of molecular weights of cereal prolamins by SDS-PAGE. J. Cereal Sci. 3131.

    Google Scholar 

  11. Della Gatta, C., Tanzarella, O. A., Resta, P., and Blanco, A. (1983). Protein content in a population of Haynaldia villosa and electrophoretic pattern of the amphiploid Triticum durum × Haynaldia villosa. In Porceddu, E. (ed.), Breeding Methodologies in Durum Wheat & Triticale Institute of Agricultural Biology, University of Tuscia, Italy, pp. 39–43.

    Google Scholar 

  12. Driscoll, C. J. (1983). Third compendium of wheat-alien chromosome lines. Suppl. Proc. 6th Int. Wheat Genet. Symp. Kyoto, Japan, 1983.

  13. Dvorak, J., Kasarda, D. D., Dietler, M. D., Lew, E. J.-L., Anderson, O. W., Litts, J. C., and Shewry, P. R. (1986). Chromosomal location of seed storage protein genes in the genome of Elytrigia elongata. Can. J. Genet. Cytol. 28818.

    Google Scholar 

  14. Field, J. M., Shewry, P. R., and Miflin, B. J. (1983). Aggregation states of alcohol-soluble storage proteins of barley, rye, wheat and maize. J. Sci. Food Agr. 34362.

    Google Scholar 

  15. Forde, B., Heyworth, A., Pywell, J., and Kreis, M. (1985). Nucleotide sequence of a B1 hordein gene and the identification of possible upstream regulatory elements in endosperm storage protein genes from barley, wheat & maize. Nucl. Acids. Res. 137327.

    Google Scholar 

  16. Grenier, M., and Godron, M. (1856). Flore de France, Vol. 3 J. B. Baillière, Paris.

    Google Scholar 

  17. Hirs, C. H. W. (1967). Performic oxidation. Methods Enzymol. 11197.

    Google Scholar 

  18. Kasarda, D. D., Autran, J.-C., Lew, E. J.-L., Nimmo, C. C., and Shewry, P. R. (1983). N-terminal amino acid sequences of ω-gliadins and ω-secalins: Implications for the evolution of prolamin genes. Biochim. Biophys. Acta 747138.

    Google Scholar 

  19. Kasarda, D. D., Lafiandra, D., Morris, R., and Shewry, P. R. (1984a). Genetic relationships of wheat gliadin proteins. Kulturpflanze 32S33.

    Google Scholar 

  20. Kasarda, D. D., Okita, T. W., Bernardin, J. E., Baecker, P. A., Nimmo, C. C., Lew, E. J.-L., Dietler, M. D., and Greene, F. C. (1984b). Nucleic acid (cDNA) and amino acid sequences of α-type gliadins from wheat (Triticum aestivum). Proc. Natl. Acad. Sci. USA 814712.

    Google Scholar 

  21. Kreis, M., Shewry, P. R., Forde, B. G., Forde, J., and Miflin, B. J. (1985). Structure and evolution of seed storage proteins and their genes, with particular reference to those of wheat, barley and rye. In Miflin, B. J. (ed.), Oxford Surveys of Plant Cell and Molecular Biology, Vol. 2 Oxford, London, pp. 253–317.

    Google Scholar 

  22. Konarev, V. G. (1983). Plant Proteins as Genetic Markers Kolos, Moscow.

    Google Scholar 

  23. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of heads of the bacteriophage T4. Nature (London) 227681.

    Google Scholar 

  24. Laursen, R. A. (1971). Solid phase Edman degradation. An automatic peptide sequence. Eur. J. Biochem. 2089.

    Google Scholar 

  25. Payne, P. I., Law, C. N., and Mudd, E. E. (1980). Control by homologous group 1 chromosomes of the high-molecular-weight subunits of glutenin, a major protein of wheat endosperm. Theor. Appl. Genet. 58113.

    Google Scholar 

  26. Payne, P. I., Holt, L. M., Jackson, E. A., and Law, C. N. (1984). Wheat storage proteins: Their genetics and their potential for manipulation by plant breeding. Phil. Trans. R. Soc. Lond. B 304273.

    Google Scholar 

  27. Payne, P. I., Roberts, M. S., and Holt, L. M. (1986). Location of genes controlling the D group of LMW glutenin subunits on chromosome 1D of bread wheat. Genet. Res. Cambr. 47175.

    Google Scholar 

  28. Rahman, S., Shewry, P. R., and Miflin, B. J. (1982). Differential protein accumulation during barley grain development. J. Exp. Bot. 33717.

    Google Scholar 

  29. Scheets, K., Rafalski, J. A., Hedgcoth, C., and Soll, D. G. (1985). Heptapeptide repeat structure of a wheat γ-gliadin. Plant Sci. Lett. 37221.

    Google Scholar 

  30. Shewry, P. R., and Miflin, B. J. (1985). Seed storage proteins of economically important cereals. In Pomeranz, Y. (ed.), Advances in Cereal Science & Technology, Vol. VII AACC, St. Paul, Minn., pp. 1–83.

    Google Scholar 

  31. Shewry, P. R., Lew, E. J.-L., and Kasarda, D. D. (1981). Structural homology of storage proteins coded by the Hor 1 locus of barley (Hordeum vulgare L.). Planta 153246.

    Google Scholar 

  32. Shewry, P. R., Field, J. M., Lew, E. J.-L., and Kasarda, D. D. (1982). The purification and characterization of two groups of storage proteins (secalins) from rye (Secale cereale L.). J. Exp. Bot. 133261.

    Google Scholar 

  33. Shewry, P. R., Miflin, B. J., Lew, E. J.-L., and Kasarda, D. D. (1983). The preparation and characterization of an aggregated gliadin fraction from wheat. J. Exp. Bot. 341403.

    Google Scholar 

  34. Shewry, P. R., Bradberry, D., Franklin, J., and White, R. D. (1984a). The chromosomal locations and linkage relationships of the structural genes for the prolamin storage proteins (secalins) of rye. Theor. Appl. Genet. 6963.

    Google Scholar 

  35. Shewry, P. R., Miflin, B. J., and Kasarda, D. D. (1984b). The structural and evolutionary relationships of the prolamin storage proteins of barley, rye and wheat. Phil. Trans. R. Soc. Lond. B 34297.

    Google Scholar 

  36. Shewry, P. R., Kreis, M., Parmar, S., Lew, E. J.-L., and Kasarda, D. D. (1985). Identification of γ-type hordeins in barley. FEBS Lett. 19061.

    Google Scholar 

  37. Shewry, P. R., Parmar, S., Fulrath, N., Kasarda, D. D., and Miller, T. E. (1986). Chromosomal locations of the structural genes for secalins in wild perennial rye (Secale montanum Guss.) and cultivated rye (S. cereale L.) determined by two-dimensional electrophoresis. Can. J. Genet. Cytol. 2876.

    Google Scholar 

  38. Sugiyama, T., Rafalski, A., and Soll, D. (1986). The nucleotide sequence of a wheat γ-gliadin genomic clone. Plant Sci. 44205.

    Google Scholar 

  39. Wachter, E., Machleidt, W., Hofner, H., and Otto, J. (1973). Aminopropyl glass and its p-phenylene diisothiocyanate derivative, a new support in solid-phase Edman degradation of peptides and proteins. FEBS Lett. 3597.

    Google Scholar 

  40. Wrigley, C. W., Autran, J.-C., and Bushuk, W. (1982). Identification of cereal varieties by gel electrophoresis of the grain proteins. In Pomeranz, Y. (ed.), Advances in Cereal Science & Technology, Vol. 5 AACC, St. Paul, Minn., pp. 211–259.

    Google Scholar 

  41. Zimmerman, C. L., Appella, E., and Pisano, J. J. (1977). Rapid analysis of amino acid phenylthiohydantoins by high performance liquid chromatography. Anal. Biochem. 77569.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shewry, P.R., Parmar, S. & Pappin, D.J.C. Characterization and genetic control of the prolamins of Haynaldia villosa: Relationship to cultivated species of the Triticeae (rye, wheat, and barley). Biochem Genet 25, 309–325 (1987). https://doi.org/10.1007/BF00499323

Download citation

Key words

  • cereals
  • seed proteins
  • amino acid sequences
  • genetics
  • homology
  • evolution