Advertisement

Biochemical Genetics

, Volume 22, Issue 1–2, pp 21–35 | Cite as

Heterogeneity in the molecular basis of three types of hereditary persistence of fetal hemoglobin and the relative synthesis of the Gγ and Aγ types of γ chain

  • A. Kutlar
  • M. B. Gardiner
  • M. G. Headlee
  • A. L. Reese
  • M. P. Cleek
  • S. Nagle
  • P. K. Sukumaran
  • T. H. J. Huisman
Article

Abstract

Restriction endonuclease analyses of DNA from one Black GγAγ-HPFH homozygote and four Black and one Indian GγAγ-HPFH heterozygotes have identified three different HPFH types which are the result of large deletions including the δ and β genes. Two of the types are comparable to those characterized previously, but the third, which is present in the Indian heterozygote, shows a distinct difference in the size of the deletion. The 5′ end point of the deletion in this type III GγAγ-HPFH extends 0.5–1.0 kb beyond the 5′ end point of one of the Black types of HPFH (type I). Each of the three types is associated with a distinct ratio between the Gγ and the Aγ chains, an observation supported by family data. The highest ratio is found in the heterozygote with the Indian type III GγAγ-HPFH, with 69.3% Gγ chains, while the averages for the other types were 50.7% Gγ (type I) and 32.3% Gγ (type II).

Key words

hereditary persistence of fetal hemoglobin different types of HPFH Gγ:Aγ ratio restriction endonucleases DNA in vitro chain synthesis family data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, E. C., Reese, A., Stallings, M., and Huisman, T. H. J. (1976). Separation of human hemoglobins by DEAE-cellulose chromatography using glycine-KCN-NaCl developers. Hemoglobin 127.Google Scholar
  2. Bernards, R., and Flavell, R. A. (1980). Physical mapping of the globin gene deletion in hereditary persistence of foetal haemoglobin (HPFH). Nucleic Acids Res 81521.Google Scholar
  3. Betke, K., Marti, H., and Schlicht, I. (1959). Estimation of small percentages of foetal haemoglobin. Nature 1841877.Google Scholar
  4. Charache, S., Clegg, J. B., and Weatherall, D. J. (1976). The Negro variety of hereditary persistence of fetal hemoglobin is a mild form of thalassemia. Br. J. Haematol. 34527.Google Scholar
  5. Efremov, G. D., Ibarra, B., Gurgey, A., Sukumaran, P. K., Altay, C., and Huisman, T. H. J. (1982). Gamma-chain heterogeneity of fetal hemoglobin in nonblack β- and δβ-thalassemia and HPFH heterozygotes and homozygotes. Am. J. Hematol. 12367.Google Scholar
  6. Headlee, M. E., Gardiner, M. B., Reese, A. L., and Huisman, T. H. J. (1983). The distribution of fetal hemoglobin and the types of γ chain in red cell fractions separated by gradient centrifugation from blood of patients with sickle cell anemia and other hemoglobinopathies. Biochem. Med. 29337.Google Scholar
  7. Huisman, T. H. J. (1981). The first homozygote for the hereditary persistence of fetal hemoglobin observed in the Southeastern United States. Hemoglobin 5411.Google Scholar
  8. Huisman, T. H. J., and Altay, C. (1981). The chemical heterogeneity of the fetal hemoglobin of black newborn babies and adults: A reevaluation. Blood 58491.Google Scholar
  9. Huisman, T. H. J., and Jonxis, J. H. P. (1977). The Hemoglobinopathies, Techniques of Identification Marcel Dekker, New York.Google Scholar
  10. Huisman, T. H. J., and Wilson, J. B. (1980). Recent advances in the quantitation of human fetal hemoglobins with different gamma chains. Am. J. Hematol. 9225.Google Scholar
  11. Huisman, T. H. J., Schroeder, W. A., Dozy, A. M., Shelton, J. R., Shelton, J. B., Boyd, E. M., and Apell, G. (1969). Evidence for multiple structural genes for the γ chain of human fetal hemoglobin in hereditary persistence of fetal hemoglobin. Ann. N.Y. Acad. Sci. 165320.Google Scholar
  12. Huisman, T. H. J., Schroeder, W. A., Charache, S., Bethlenfalvay, N. C., Bouver, N., Shelton, J. R., Shelton, J. B., and Apell, G. (1971). Hereditary persistence of fetal hemoglobin. Heterogeneity of fetal hemoglobin in homozygotes and in conjunction with β-thalassemia. N. Engl. J. Med. 285711.Google Scholar
  13. Huisman, T. H. J., Schroeder, W. A., Efremov, G. D., Duma, H., Mladenovski, B., Hyman, C. B., Rachmilewitz, E. A., Bouver, N., Miller, A., Brodie, A. R., Shelton, J. R., Shelton, J. B., and Apell, G. (1974). The present status of the heterogeneity of fetal hemoglobin in β-thalassemia: an attempt to unify some observations in thalassemia and related conditions. Ann. N.Y. Acad. Sci. 232107.Google Scholar
  14. Huisman, T. H. J., Altay, C. A., Webber, B., Reese, A. L., Gravely, M. E., Okonjo, K., and Wilson, J. B. (1981). Quantitation of three types of γ chain of Hb F by high pressure liquid chromatography; Application of this method to the Hb F of patients with sickle cell anemia or the S-HPFH condition. Blood 5775.Google Scholar
  15. Jagadeeswaran, P., Tuan, D., Forget, B. G., and Weissman, S. M. (1982). A gene deletion ending at the midpoint of a repetitive DNA sequence in one form of hereditary persistence of fetal hemoglobin. Nature 296469.Google Scholar
  16. Maxam, A. M., and Gilbert, W. (1980). Sequencing end-labeled DNA with base-specific chemical cleavage. Methods Enzymol. 65499.Google Scholar
  17. Mears, J. G., Ramirez, F., Leibowitz, D., Nakamura, F., Bloom, A., Konotey-Ahulu, F., and Bank, A. (1978). Changes in restricted human cellular DNA fragments containing globin gene sequences in thalassemia and related disorders. Proc. Natl. Acad. Sci. USA 751222.Google Scholar
  18. Mears, J. G. (1981). Gene deletion in hereditary persistence of fetal hemoglobin (HPFH) and δβ thalassemia. In Schneider, R. G., Charache, S., and Schroeder, W. A. (eds.), Texas Reports on Biology and Medicine, The University of Texas Medical Branch at Galveston, Vol. 40, p. 356.Google Scholar
  19. Ottolenghi, S., Giglioni, B., Taramelli, M., Comi, P., Massa, U., Saglio, G., Camaschella, C., Izzo, P., Cao, A., Galanello, R., Gimferrer, E., Baiget, M., and Gianni, M. (1982). Molecular comparison of δβ-thalassemia and hereditary persistence of fetal hemoglobin DNAs: evidence of a regulatory area? Proc. Natl. Acad. Sci. USA 792347.Google Scholar
  20. Poncz, M., Solowiejczyk, D., Harpel, B., Mory, Y., Schwartz, E., and Surrey, S. (1982). Construction of human gene libraries from small amounts of peripheral blood: Analysis of β-like globin genes. Hemoglobin 627.Google Scholar
  21. Ringelhann, B., Acquaye, C. T. A., Oldham, J. H., Konotey-Ahulu, F. I. D., Yawson, G., Sukumaran, P. K., Schroeder, W. A., and Huisman, T. H. J. (1977). Homozygotes for the hereditary persistence of fetal hemoglobin: The ratio of Gγ to Aγ chains and biosynthetic studies. Biochem. Genet. 151083.Google Scholar
  22. Schroeder, W. A., Huisman, T. H. J., Shelton, J. R., Shelton, J. B., Kleihauer, E. F., Dozy, A. M., and Robberson, B. (1968). Evidence for multiple structural genes for the γ chain of human fetal hemoglobin. Proc. Natl. Acad. Sci. USA 60537.Google Scholar
  23. Schroeder, W. A., Huisman, T. H. J., and Sukumaran, P. K. (1973). A second type of hereditary persistence of foetal haemoglobin in India. Br. J. Haematol. 25131.Google Scholar
  24. Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98503.Google Scholar
  25. Tuan, D., Murnane, M. J., deRiel, J. K., and Forget, B. G. (1980). Heterogeneity in the molecular basis of hereditary persistence of foetal haemoglobin. Nature 285335.Google Scholar
  26. Wilson, J. T., Wilson, L. B., deRiel, J. K., Villa-Komaroff, L., Efstratiadis, A., Forget, B. G., and Weissman, S. M. (1978). Insertion of synthetic copies of human globin genes into bacterial plasmids. Nucleic Acids Res. 5563.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • A. Kutlar
    • 1
    • 2
  • M. B. Gardiner
    • 1
    • 2
  • M. G. Headlee
    • 1
    • 2
  • A. L. Reese
    • 1
    • 2
  • M. P. Cleek
    • 1
    • 2
  • S. Nagle
    • 1
    • 2
  • P. K. Sukumaran
    • 1
    • 2
  • T. H. J. Huisman
    • 1
  1. 1.Laboratory of Protein Chemistry and Comprehensive Sickle Cell Center, Department of Cell and Molecular BiologyMedical College of GeorgiaAugusta
  2. 2.Medical Research ServiceVeterans Administration Medical CenterAugusta

Personalised recommendations