Skip to main content
Log in

Possible role of cyclic AMP in the relaxation process of mammalian heart: Effects of dibutyryl cyclic AMP and theophylline on potassium contractures in cat papillary muscles

  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Summary

The effect of dibutyryl cyclic AMP (DB-c-AMP; 3×10−4–3×10−3 M) on electrically induced twitch and high potassium (142.4 mM KCl)-induced contracture tension was studied in papillary muscles from normal and reserpinized cats ([Ca]0 1.8 mM; 25°C; pH 7.4). In both groups of preparations, the increase in twitch tension evoked by DB-c-AMP was accompanied by an abbreviation of the time to peak force and of relaxation time. In the same preparations, the high potassium contracture was markedly depressed by DB-c-AMP in a concentration-dependent manner. Similar results were obtained with the N6-monobutyryl derivative of cyclic AMP.

The relaxing effects of the cyclic nucleotides on KCl contractures did not appear to be due to possible non-cyclic breakdown products: adenosine; 5′-AMP and sodium butyrate did not attenuate contracture tension at concentrations up to 3×10−3 M. The same applies to ATP and non-cyclic N6-2′-O-3′-O-tributyryl-adenosine-monophosphate. Theophylline (10−2 M) was found to prolong the relaxation time of the twitch and to enhance the high KCl contracture.

It is concluded that cyclic AMP may be capable of modulating the relaxation process of mammalian heart and that not only the positive inotropic but also the relaxant effects of catecholamines on myocardium described before may be mediated by the cyclic AMP system. The relaxant effects of cyclic AMP derivatives on intact myocardial preparations are attributed to a stimulation by cyclic AMP of the calcium transport of the sarcoplasmic reticulum (SR) and are interpreted to be a corollary to the effects of cyclic AMP previously obtained on isolated SR preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berman, D. A.: Effect of glucose on potassium contracture tension in rat heart. Life Sci. 13, 441–451 (1973)

    Google Scholar 

  • Brooker, G.: oscillation of cyclic adenosine monophosphate concentration during the myocardial contraction cycle. Science 182, 933–934 (1973)

    Google Scholar 

  • Dhalla, N. S., Varley, K. G., Harrow, J. A. C.: Effect of epinephrine and adenosine cyclic 3′,5′-monophosphate on heart mitochondrial and microsomal calcium uptake. Res. Comm. chem. Path. Pharmacol. 9, 489–500 (1974)

    Google Scholar 

  • Drummond, G. I., Hemmings, S., Warneboldt, R. B.: Uptake and catabolism of N6, 2′-O-dibutyryl cyclic AMP by the perfused heart. Life Sci 15, 319–328 (1974)

    Google Scholar 

  • Entman, M. L.: The role of cyclic AMP in the modulation of cardiac contractility. In: Advances in cyclic nucleotide research, vol. 4 (P. Greengard and G. A. Robison, eds.). New York: Raven Press 1974

    Google Scholar 

  • Entman, M. L., Levey, G. S., Epstein, S. E.: Mechanism of action of epinephrine and glucagon on the canine heart: Evidence for increase in sarcotubular calcium stores mediated by cyclic 3′,5′-AMP. Circulat. Res. 25, 429–438 (1969)

    Google Scholar 

  • Fabiato, A., Fabiato, F.: Relaxing and inotropic effects of cyclic AMP on skinned cardiac cells. Nature (Lond.) 253, 556–558 (1975)

    Google Scholar 

  • Fuchs, F.: Inhibition of sarcotubular calcium transport by caffeine: species and temperature dependence. Biochim. biophys. Acta (Amst.) 172, 566–570 (1969)

    Google Scholar 

  • Gillibrand, I. M., Miall, P. A.: The relation between calcium ion transport and adenylate cyclase activity in myocardial sarcoplasmic reticulum preparations. Biochem. J. 128, 109 P (1972)

    Google Scholar 

  • Graham, J. A., Lamb, J. F.: The effect of adrenaline on the tension developed in contractures and twitches of the ventricle of the frog. J. Physiol. (Lond.) 197, 479–509 (1968)

    Google Scholar 

  • Harigaya, S., Schwartz, A.: Rate of calcium binding and uptake in normal animal and failing human cardiac muscle. Circulat. Res. 25, 781–794 (1969)

    Google Scholar 

  • Johnson, P. N., Inesi, G.: The effect of methylxanthines and local anaesthetics on fragmented sarcoplasmic reticulum. J. Pharmacol. exp. Ther. 169, 308–314 (1969)

    Google Scholar 

  • Jundt, H., Porzig, H., Reuter, H., Stucki, J. W.: The effect of substances releasing intracellular calcium ions on sodium-dependent calcium efflux from guinea-pig auricles. J. Physiol. (Lond.) 246, 229–253 (1975)

    Google Scholar 

  • Katz, A. M., Repke, D. I.: Calcium-membrane interactions in the myocardium: Effects of ouabain, epinephrine and 3′,5′-cyclic adenosinc monophosphate. Amer. J. Cardiol. 31, 193–201 (1973)

    Google Scholar 

  • Kavaler, F., Morad, M.: Paradoxical effects of epinephrine on excitation-contraction coupling in cardiac muscle. Circulat. Res. 18, 492–501 (1966)

    Google Scholar 

  • Kirchberger, M. A., Tada, M., Repke, D. I., Katz, A. M.: Cyclic adenosine 3′,5′-monophosphate-dependent protein kinase stimulation of calcium uptake by canine cardiac microsomes. J. Mol. Cell. Cardiol. 4, 673–680 (1972)

    Google Scholar 

  • Koch-Weser, J.: Effect of rate changes on strength and time course of contraction of papillary muscle. Amer. J. Physiol. 204, 451–457 (1963)

    Google Scholar 

  • Kukovetz, W. R.: Über die Wirkung von Dibutyryl-3′,5′-AMP am isolierten Herzen. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 260, 163–164 (1968)

    Google Scholar 

  • Kukovetz, W. R., Pöch, G.: Cardiostimulatory effects of cyclic 3′,5′-adenosine monophosphate and its acylated derivatives. Naunyn-Schmiedebergs Arch. Pharmak. 266, 236–254 (1970)

    Google Scholar 

  • Kukovetz, W. R., Pöch, G.: The positive inotropic effect of cyclic AMP. In: Advances in cyclic nucleotide research, vol. I, (P. Greengard, G. A. Robison and R. Paoletti, eds.), pp. 261–290. New York: Raven Press 1972

    Google Scholar 

  • Kuschinsky, G., Lindmar, R., Wollert, U.: Kursus der Allgemeinen Pharmakologie und Toxikologie, p. 4. Stuttgart: Wissenschaftl. Verlagsges. 1974

    Google Scholar 

  • LaRaia, P. I., Morkin, E.: Adenosine 3′,5′-monophosphate-dependent membrane phosphorylation. Circulat. Res. 35, 298–306 (1974)

    Google Scholar 

  • Lindmar, R., Muscholl, E.: Die Wirkung von Pharmaka auf die Elimination von Noradrenalin aus der Perfusionsflüssigkeit und die Noradrenalinaufnahme in das isolierte Herz. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 247, 469–492 (1964)

    Google Scholar 

  • Lindmar, R., Muscholl, E.: Die Aufnahme von α-Methyl-noradrenalin in das isolierte Kaninchenherz und seine Freisetzung durch Reserpin und Guanethidin in vivo. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 249, 529–548 (1965)

    Google Scholar 

  • Meinertz, T., Nawrath, H., Scholz, H.: Influence of cyclization and acyl substitution on the inotropic effects of adenine nucleotides. Naunyn-Schmiedeberg's Arch. Pharmacol. 278, 165–178 (1973a)

    Google Scholar 

  • Meinertz, T., Nawrath, H., Scholz, H.: Stimulatory effects of DB-c-AMP and adrenaline on myocardial contraction and 45Ca exchange. Experiments at reduced calcium concentration and low frequencies of stimulation. Naunyn-Schmiedeberg's Arch. Pharmacol. 279, 327–338 (1973b)

    Google Scholar 

  • Meinertz, T., Nawrath, H., Scholz, H.: Cardiac effects of dibutyryl-c-AMP in several mammalian species. Naunyn-Schmiedeberg's Arch. Pharmacol. 282, R 64 (1974a)

    Google Scholar 

  • Meinertz, T., Nawrath, H., Scholz, H.: Possible role fo cyclic AMP in the relaxation process of mammalian cardiac muscle. Abstracts 2nd Int. Conference on Cyclic AMP, p. 70, Vancouver/Canada (1974b)

  • Meinertz, T., Nawrath, H., Scholz, H.: Relaxant effects of dibutyryl cyclic AMP on mammalian cardiac muscle. J. Cyclic Nucl. Res. 1, 31–36 (1975a)

    Google Scholar 

  • Meinertz, T., Nawrath, H., Scholz, H., Wellek, S.: Evidence for a dibutyryl-c-AMP increased 45Ca release from cardiac muscle. Res. Comm. chem. Path. Pharmacol. 11, 167–170 (1975b)

    Google Scholar 

  • Meinertz, T., Nawrath, H., Scholz, H., Winter, K.: Effect of DB-c-AMP on mechanical characteristics of ventricular and atrial preparations of several mammalian species. Naunyn-Schmiedeberg's Arch. Pharmacol. 282, 143–153 (1974)

    Google Scholar 

  • Morad, M.: Contracture and catecholamines in mammalian myocardium. Science 166, 505–506 (1969)

    Google Scholar 

  • Morad, M., Rolett, E. L.: Relaxing effect of catecholamines on mammalian heart. J. Physiol. (Lond.) 224, 537–558 (1972)

    Google Scholar 

  • Namm, D. H., Mayer, S. E., Maltbie, M.: The role of potassium and calcium ions in the effect of epinephrine on cardiac cyclic adenosine 3′,5′-monophosphate, phosphorylase kinase and phosphorylase. Molec. Pharmacol. 4, 522–530 (1968)

    Google Scholar 

  • Ogawa, Y.: Some properties of fragmented frog sarcoplasmic reticulum with particular reference to its response to caffeine. J. Biochem. (Tokyo) 67, 667–683 (1970)

    Google Scholar 

  • Pretorius, P. J., Pohl, W. G., Smithen, C. S., Inesi, G.: Structural and functional characterization of dog heart microsomes. Circulat. Res. 25, 487–499 (1969)

    Google Scholar 

  • Reiter, M., Stickel, F. I.: Der Einfluß der Kontraktionsfrequenz auf das Aktionspotential des Meerscheinchen-Papillarmuskels. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 260, 342–365 (1968)

    Google Scholar 

  • Reuter, H.: Über die Wirkung von Adrenalin auf den cellulären Ca-Umsatz des Meerschweinchenvorhofs. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 251, 401–412 (1965)

    Google Scholar 

  • Reuter, H.: Localization of beta adrenergic receptors, and effects of noradrenaline and cyclic nucleotides on action potentials, ionic currents and tension in mammalian cardiac muscle. J. Physiol. (Lond.) 242, 429–451 (1974)

    Google Scholar 

  • Reuter, H., Seitz, N.: The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J. Physiol. (Lond.) 195, 451–470 (1968)

    Google Scholar 

  • Rich, T. L., Brady, A. J.: Potassium contracture and utilization of high-energy phosphates in rabbit heart. Amer. J. Physiol. 226, 105–113 (1974)

    Google Scholar 

  • Robison, G. A., Butcher, R. W., Sutherland, E. W.: Cyclic AMP. New York-London: Academic Press 1971

    Google Scholar 

  • Scholz, H.: Über den Mechanismus der positiv inotropen Wirkung von Theophyllin am Warmblüterherzen. II. Wirkung von Theophyllin auf Aufnahme und Abgabe von 45Ca. Naunyn-Schmiedebergs Arch. Pharmak. 271, 396–409 (1971a)

    Google Scholar 

  • Scholz, H.: Über den Mechanismus der positiv inotropen Wirkung von Theophyllin am Warmblüterherzen. III. Wirkung von Theophyllin auf Kontraktion und Ca-abhängige Membranpotentialänderungen. Naunyn-Schmiedebergs Arch. Pharmak. 271, 410–429 (1971b)

    Google Scholar 

  • Seibel, K., Reiter, M.: Biphasic contractures of guinea-pig cardiac ventricular muscle. Naunyn-Schmiedeberg's Arch. Pharmacol. 280, 295–314 (1973)

    Google Scholar 

  • Shinebourne, E. A., Hess, M. L., White, R. J., Hamer, J.: The effect of noradrenaline on calcium uptake of the sarcoplasmic reticulum. Cardiovasc. Res. 3, 113–117 (1969)

    Google Scholar 

  • Shinebourne, E. A., White, R. J.: Cyclic AMP and calcium uptake of the sarcoplasmic reticulum in relation to increased rate of relaxation under the influence of catecholamines. Cardiovasc. Res. 4, 194–200 (1970)

    Google Scholar 

  • Skelton, C. L., Levey, G. S., Epstein, S. E.: Positive inotropic effects of dibutyryl cyclic adenosine 3′,5′-monophosphate. Circulat. Res. 26, 35–43 (1970)

    Google Scholar 

  • Taniguchi, M., Nagai, T.: Effect of temperature on caffeine-induced calcium release from isolated reticulum in frog skeletal muscle. Jap. J. Physiol. 20, 61–71 (1970)

    Google Scholar 

  • Tsien, R. W., Giles, W., Greengard, P.: Cyclic AMP mediates the effects of adrenaline on cardiac Purkinje fibres. Nature New Biol. 240, 181–183 (1972)

    Google Scholar 

  • Watanabe, A. M., Besch, H. R.: Cyclic adenosine monophosphate modulation of slow calcium influx in guinea pig hearts. Circulat. Res. 35, 316–324 (1974)

    Google Scholar 

  • Weber, A.: The mechanism of the action of caffeine on sarcoplasmic reticulum. J. gen. Physiol. 52, 760–772 (1968)

    Google Scholar 

  • Weber, A., Herz, R.: The relationship between the caffeine contracture of intact muscle and the effect of caffeine on reticulum. J. gen. Physiol. 52, 750–759 (1968)

    Google Scholar 

  • Wollenberger, A., Babskii, E. B., Krause, E.-G., Genz, S., Blohm, D., Bogdanova, E. V.: Cyclic changes in levels of cyclic AMP and cyclic GMP in frog myocardium during the cardiac cycle. Biochem. biophys. Res. Commun. 55, 446–452 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meinertz, T., Nawrath, H. & Scholz, H. Possible role of cyclic AMP in the relaxation process of mammalian heart: Effects of dibutyryl cyclic AMP and theophylline on potassium contractures in cat papillary muscles. Naunyn-Schmiedeberg's Arch. Pharmacol. 293, 129–137 (1976). https://doi.org/10.1007/BF00499217

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00499217

Key words

Navigation