Advertisement

Methods for measuring the bubble size in bubble column bioreactors II

  • R. Buchholz
  • K. Schügerl
Biotechnology

Summary

Electrooptical and light scattering methods for measuring the structure of two phase flow, especially bubble size, are described and compared with photographic and electrical conductivity methods.

Keywords

Electrical Conductivity Phase Flow Bubble Size Bubble Column Conductivity Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Symbols

L

length

T

time

M

mass

d

bubble diameter

\(\bar d\)

mean bubble diameter

dK

inside diameter of the sensor capillary

Δ1

longitudinal distance between start and stop sensors

Δ1B

pierced length of bubble

t

time

Δt1

length of square-wave signal at start sensor

Δt2

length of square-wave signal at stop sensor

Δ112

time delay between start and stop signals

VB

bubble volume

VB

bubble velocity

wSG

superficial gas velocity

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brentrup, L., Onken, U., Irrgang, W., Wagner., F. (1977). “Bioreaktoren”, H. Keune and R. Scheunemann, eds., DFVLR p. 137Google Scholar
  2. Buchholz, R., (1979). Dissertation, Technical University HannoverGoogle Scholar
  3. Buchholz, R., Schügerl, K. (1979). European J. Appl. Microbiol. Biotechnol. 6, 301–313Google Scholar
  4. Burgess, J.M., Calderbank, P.H. (1975). Chem. Eng. Sci. 30, 743Google Scholar
  5. Calderbank, P.H. (1958). Trans. Inst. Chem. Engrs. 36, 443; Ibid (1959). 37, 173Google Scholar
  6. Calderbank, P.H. (1960). Int. Symp. Destillation, Brighton (Inst. Chem. Eng.) p. 51Google Scholar
  7. Calderbank, P.H. (1967). Mass transfer in fermenation equipment. In: Biochemistry and biological engineering science, N. Blakeborough, ed. vol. 1, p. 101., New York: Academic PressGoogle Scholar
  8. Calderbank, P.H., Pereira, J. (1977). Chem. Eng. Sci. 32, 1427Google Scholar
  9. Delhaye, J.M. (1969). Proc. 11th Nat. ASME/AIChE Heat Transfer Conf. on Two Phase Flow Instrumentations. Minneapolis, Minn. p. 58Google Scholar
  10. Geake, J.E., Smaller, C. (1975). The Chemical Engineer, p. 301 MayGoogle Scholar
  11. Jekat, H. (1975). Dissertation, Technical University MunichGoogle Scholar
  12. Pilhofer, T., Miller, H.D. (1972). Chem. Ing. Techn. 44, 295Google Scholar
  13. Pilhofer, T. (1974). Chem. Ing. Techn. 46, 913 (MS 149/74)Google Scholar
  14. Sauter, J. (1928). Forsch. Arb. Geb. Ing. 2–8, 312Google Scholar
  15. Todtenhaupt, E.K. (1971). Chem. Ing. Techn. 43, 337Google Scholar
  16. Trice, V.G., Roger, W.A., Rushton, J.H. (1956). AIChE-Journal 2, 205Google Scholar
  17. Vermeulen, T., Williams, G.M., Langlois, G.E. (1955). Chem. Eng. Progress 51, 85Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • R. Buchholz
    • 1
  • K. Schügerl
    • 1
  1. 1.Institut für Technische Chemie der Universität HannoverHannover 1Germany

Personalised recommendations