Advertisement

Histochemistry

, Volume 41, Issue 2, pp 167–173 | Cite as

Zur Lokalisation von biogenen Aminen im Rückenmark der Ratte

Eine fluorescenzhistochemische Untersuchung nach L-Dopa-Gabe
  • Ch. N. Chouchkov
Article

Zusammenfassung

Es wird eine ausführliche Beschreibung der Verteilung aminerger Fasern im Rückenmark der Ratte vorgelegt. Die Darstellung der Fasern erfolgte mittels Formaldehyd-induzierter Fluorescenz (FIF), die nach intraventrikulärer Injektion von L-Dopa verstärkt ist. Zwischen Dopamin (oder Noradrenalin)-ergen und serotoninergen Nerven-fasern wird nicht unterschieden. — Zwischen Th1 und L4 ist der Nucl. intermediolateralis (IML) der am reichsten von aminergen Fasern versorgte Kern. Daneben werden aminerge Fasern jedoch auch in zahlreichen anderen Kernen gefunden, auch im Cervikal-, unteren Lumbal- und Sakralmark. Offensichtlich stehen somatomotorische und -sensible Kerne im gesamten Rückenmark unter dem Einfluß aminerger Fasern. Faserbündel gehen über die Commissura grisea ant. (CGA) und Commissura grisea post. (CGP) auf die kontralaterale Seite. In der weißen Substanz werden nach Dopa-Gabe nur vereinzelte fluorescierende Nervenfasern gefunden; der Verlauf des aminergen bulbospinalen Tractus muß deshalb durch weitere Versuche aufgedeckt werden.

Localization of biogenic amines in the rat spinal cord

A fluorescence histochemical study after intraventricular injection of L-dopa

Summary

In this study a more detailed description of aminergic fibres in the rat spinal cord is given than in previous works. Formaldehyde-induced fluorescence (FIF) was used for their detection and the intraventricular injection of L-Dopa for increase of FIF. No attempt was done to discriminate between dopamine (or noradrenaline)-ergic and serotoninergic nerve fibres.—Between Th1 and L4 the most prominent nucleus being richly supplied by aminergic terminals is the Nucl. intermediolateralis (IML). Apart from this numerous other nuclei were found that exhibit FIF from aminergic fibres, even in the cervical and lower lumbar and sacral region. Evidence exists that somatomotory and-sensory nuclei throughout the spinal cord are under aminergic control. Fibre bundles transverse over Commissura grisea ant. (CGA) and Commissura post. (CGP) from side to side. In the white matter after Dopa injection only few fluorescent nerve fibres could be detected; so the pathway of the bulbospinal aminergic tractus still remains to be elucidated by other experiments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Amin, A. H., Crawford, T. B. B., Gaddum, J. H.: The distribution of substance P and 5-hydroxytryptamine in the central nervous system of the dog. J. Physiol. (Lond.) 126, 596–618 (1954)Google Scholar
  2. Andén, N. E.: Distribution of monoamines and dihydroxyphenylalanine decarboxylase activity on the spinal cord. Acta physiol. scand. 64, 197–203 (1965)Google Scholar
  3. Andén, N. E., Jukes, M. G. M., Lundberg, A., Vyklicky, L.: The effect of Dopa on the spinal cord. I. Influence on transmission from primary afferents. Acta physiol. scand. 67, 373–386 (1966)Google Scholar
  4. Andén, N. E., Jukes, M. G. M., Lundberg, A., Vyklicky, L.: The effect of Dopa on the spinal cord. II. A pharmacological analysis. Acta physiol. scand. 67, 387–397 (1966)Google Scholar
  5. Anderson, E. G., Holgerson, L. O.: The distribution of 5-hydroxytryptamine and norepinephrine in cat spinal cord. J. Neurochem. 13, 479–485 (1966)Google Scholar
  6. Bartholini, G., Pletscher, A.: Drugs affecting monoamines in basal ganglia. Advanc. Biochem. Pharmacol. 6, 135–148 (1972)Google Scholar
  7. Bertler, A., Falck, B., Owman, Ch., Rosengren, E.: The localization of monoaminergic bloodbrain barrier mechanisms. Pharmacol. Rev. 18, 369–385 (1966)Google Scholar
  8. Björklund, A., Katzman, R., Stenevi, U., West, K. A.: Development and growth of axonal sprouts from noradrenaline and 5-hydroxytryptamine neurons in the rat spinal cord. Brain Res. 31, 21–33 (1971)Google Scholar
  9. Carlsson, A., Falck, B., Fuxe, K., Hillarp, N. A.: Cellular localization of monoamines in the spinal cord. Acta physiol. scand. 60, 112–119 (1964)Google Scholar
  10. Carlsson, A., Magnusson, T., Rosengren, E.: 5-hydroxytryptamine of the spinal cord normally and after transection. Experientia (Basel) 19, 359–360 (19638)Google Scholar
  11. Chouchkov, Ch. N.: Intraventricular application of tritiumlabelled compounds in the histoautoradiographic study of the CNS in some animals. C.R. Acad. Bulg. Sci. 24, 1563–1566 (1971)Google Scholar
  12. Dahlström, A., Fuxe, K.: Evidence for the existence of monoamine neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta physiol. scand. 64, Suppl. 247, 7–36 (1965)Google Scholar
  13. Dahlström, A., Häggendal, J.: The transport and life span of amine storage granules in bulbospinal noradrenaline neurones of the rat. J. Pharm. Pharmacol. 21, 55–57 (1969)Google Scholar
  14. Euler, U. S. v.: A specific sympathomimetic ergone in adrenergic nerve fibres (sympathin) and its relation to adrenaline and noradrenaline. Acta physiol. scand. 12, 73–97 (1946)Google Scholar
  15. Euler, U. S. v.: Noradrenaline (arterenol), adrenal medullary hormone and chemical transmitter of adrenergic nerves. Ergebn. Physiol. 46, 261–307 (1950)Google Scholar
  16. Fuxe, K.: Evidence for the existence of monoamine neurons in the central nervous system. IV. Distribution of monoamine nerve terminals in the central nervous system. Acta physiol. scand. 64, Suppl. 247, 38–85 (1965)Google Scholar
  17. Glowinski, J., Iversen, L. L.: Regional studies of catecholamines in the rat brain.—I. The disposition of (3H) norepinephrine, (3H)-dopamine, and (3H)-Dopa in various regions of the brain. J. Neurochem. 13, 655–669 (1966)Google Scholar
  18. Heene, R.: Histochemischer Nachweis von Katecholaminen und 5-Hydroxytryptamin am Kryostatschnitt. Histochemie 14, 324–327 (1968)Google Scholar
  19. Magnusson, T., Rosengren, E.: Catecholamines of the spinal cord normally and after transection. Experientia (Basel) 19, 229–230 (1963)Google Scholar
  20. Réthelyi, M.: Cell and neuropil architecture of the intermediolateral (sympathetic) nucleus of cat spinal cord. Brain Res. 46, 203–213 (1972)Google Scholar
  21. Shaskan, E. G., Snyder, S. H.: Kinetics of serotonin accumulation into slices from rat brain: relationship to catecholamines uptake. J. Pharmacol. exp. Ther. 175, 404–409 (1970)Google Scholar
  22. Vogt, M.: The concentration of sympathin in different parts of the central nervous system under normal conditions and after administration of drugs. J. Physiol. (Lond.) 123, 451–481 (1954)Google Scholar
  23. Waibl, H.: Zur Topographie der Medulla spinalis der Albinoratte (Rattus norvegicus). Ergebn. Anat. Entwickl.-Gesch. 47, 6 (1973)Google Scholar
  24. Winckler, J.: Funktionelle Morphologie der vegetativen nervösen Endstrecke. Med. Klin. 67, 795–800 (1972)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Ch. N. Chouchkov
    • 1
    • 2
  1. 1.Anatomisches Institut der Universität WürzburgWürzburgDeutschland
  2. 2.Anatomisches Institut der Medizinischen AkademieSofia 31Bulgarien

Personalised recommendations