Biochemical Genetics

, Volume 23, Issue 1–2, pp 61–72 | Cite as

On the nature of l-xylulose reductase deficiency in essential pentosuria

  • A. B. Lane


Essential pentosuria is the result of a partial deficiency of l-xylulose reductase. Red blood cells of normal individuals have been found to contain two l-xylulose reductases: a major and a minor isozyme. Red cells from pentosurics contain only one isozyme. The residual enzyme of pentosurics and the normal minor isozyme have similar Michaelis constants for l-xylulose and xylitol, similar activity responses to pH, and similar rates of migration when electrophoresed or subjected to ion-exchange chromatography. It is suggested that homozygosity for the pentosuria allele results in the absence of the major isozyme and that the residual isozyme of pentosurics is identical to the minor isozyme of normal individuals.

Key words

essential pentosuria l-xylulose reductase isozymes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnes, H. D., and Bloomberg, B. M. (1953). Paper chromatography of the urinary sugar in essential pentosuria. S. Afr. J. Med. Sci. 1893.Google Scholar
  2. Beutler, E. (1975). A Manual of Biochemical Methods 2nd ed., Grune and Stratton, New York.Google Scholar
  3. Chen, S.- H., Giblett, E. R., Anderson, J. E., and Fossum, B. L. G. (1972). Genetics of glutamic-pyruvic transaminase: Its inheritance, common and rare variants, population distribution, and differences in catalytic activity. Ann. Hum. Genet. 35401.Google Scholar
  4. Eisenberg, F. J., Dayton, P. G., and Burns, J. J. (1959). Studies on the glucuronic acid pathway of glucose metabolism. J. Biol. Chem. 234250.Google Scholar
  5. Garrod, A. E. (1908). The Croonian lectures on inborn errors of metabolism. Lecture IV. Lancet 2:214.Google Scholar
  6. Hickman, J., and Ashwell, G. (1959). A sensitive and stereospecific enzymatic assay for xylulose. J. Biol. Chem. 234758.Google Scholar
  7. Hollmann, S., and Touster, O. (1956). An enzymatic pathway from L-xylulose to D-xylulose. J. Am. Chem. Soc. 783544.Google Scholar
  8. Khachadurian, A. K. (1962). Essential pentosuria. Am. J. Hum. Genet. 14249.Google Scholar
  9. Kumahara, Y., Feingold, D. S., Freedberg, I. M., and Hiatt, H. H. (1961). Studies of pentose metabolism in normal subjects and in patients with pentosuria and pentosuria trait. J. Clin. Endocrinol. 21887.Google Scholar
  10. Levene, P. A., and La Forge, F. B. (1914). Note on a case of pentosuria. J. Biol. Chem. 18319.Google Scholar
  11. Politzer, W. M., and Fleischmann, H. (1962). L-Xylulosuria in a Lebanese family. Am. J. Hum. Genet. 14256.Google Scholar
  12. Salkowski, E., and Jastrowitz, M. (1892). Uber eine bisher nich beobachtete Zucherart im Harn. Centralbl. Med. Wissensch. 30337.Google Scholar
  13. Touster, O. (1959). Pentose metabolism and pentosuria. Am. J. Med. 26724.Google Scholar
  14. Touster, O. (1962). D- and L-threo-pentulose (D- and L-xylulose). Pyrimidine-catalyzed epimerization of xylose. In Whistler, R. L., and Wolfrom, M. L. (eds.), Methods of Carbohydrate Chemistry, I Academic Press, New York, pp. 98–101.Google Scholar
  15. Wang, Y. M., and van Eys, J. (1970). The enzymatic defect in essential pentosuria. N. Engl. J. Med. 282892.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • A. B. Lane
    • 1
  1. 1.MRC Human Ecogenetics Research Unit, Department of Human Genetics, School of PathologyThe South African Institute for Medical Research and University of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations