Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 308, Issue 2, pp 111–115 | Cite as

Central and peripheral effects of bradykinin and prostaglandin E2 on blood pressure in conscious rats

  • Kazuoki Kondo
  • Tetsuji Okuno
  • Konosuke Konishi
  • Takao Saruta
  • Eiichi Kato
Article

Summary

Bradykinin or prostaglandin E2 (PGE2), when injected intravenously, decreased blood pressure of conscious rats in a dose-dependent manner, while intracerebroventricular injections of bradykinin or PGE2 caused a dose-dependent increase in blood pressure. SQ 14,225, an inhibitor of angiotensin converting enzyme, potentiated the central pressor or peripheral depressor effect of bradykinin. Indomethacin, an inhibitor of prostaglandin synthesis, almost completely inhibited the central pressor effect of bradykinin when injected intraventricularly. Indomenthacin, when injected intravenously, failed to inhibit the peripheral depressor effect of bradykinin, whereas it significantly attenuated the peripheral depressor effect of bradykinin when the angiotensin converting enzyme was inhibited with SQ14,225. These results suggest that the central pressor effect of bradykinin is mainly mediated by the synthesis of prostaglandins in the central nervous system, while only a small fraction of peripheral depressor effect of bradykinin is, at least in conscious rats, mediated by the synthesis of prostaglandins in the systemic circulation.

Key words

Bradykinin Prostaglandin E2 SQ 14,225 Indomethacin Blood pressure of conscious rats 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Halim, M. S., Sjoquist, B., Anggard, E.: Inhibition of prostaglandin synthesis in rat brain. Acta Pharmacol. Toxicol. (Kbh.) 43, 266–272 (1978)Google Scholar
  2. Blumberg, A. L., Denny, S. E., Marshall, G. R., Needleman, P.: Blood vessel-hormone interactions: angiotensin, bradykinin and prostaglandins. Am. J. Physiol. 232, H305-H310 (1977)Google Scholar
  3. Correa, F. M. A., Graeff, F. G.: Central mechanisms of the hypertensive action of intraventricular bradykinin in the unanesthetized rat. Neuropharmacology 13, 65–75 (1974)Google Scholar
  4. Erdös, E. G., Yang, H. Y. T.: Kininases. In: Handbook of experimental pharmacology. Vol. 25, Bradykinin, kallidin and kallikrein. (E. G. Erdös, ed.), pp. 289–323. Berlin, Heidelberg, New York: Springer 1970Google Scholar
  5. Euler, U. S. von, Hedqvist, P.: Inhibitory action of prostaglandin E1 and E2 on the neuromuscular transmission in the guinea pig vas deferens. Acta Physiol. Scand. 77, 510–512 (1969)Google Scholar
  6. Ferreira, S. H., Bakhle, Y. S.: Inactivation of bradykinin and related peptides in the lung. In: Metabolic functions of the lung. (Y. S. Bakhle and J. R. Vane, eds.), pp. 33–53. New York: Marcel Dekker Inc. 1977Google Scholar
  7. Flower, R. J., Vane, J. R.: Inhibition of prostaglandin synthesis in brain explains the antipyretic activity of paracetamol(4-acetamidophenol). Nature 240, 410–411 (1972)Google Scholar
  8. Fujimoto, S.: Relative influence of anesthetics on depressor effects of intravenous prostaglandins E2 and A2. Jpn. J. Pharmacol. 27, 473–475 (1977)Google Scholar
  9. Haddy, F. J., Emerson, T. E., Jr., Scott, J. B., Daugherty, R. M., Jr.: The effect of kinins on the cardiovascular system. In: Handbook of experimental pharmacology. Vol. 25, Bradykinin, kallidin and kallikrein. (E. G. Erdös, ed.), pp. 362–384. Berlin, Heidelberg, New York: Springer 1970Google Scholar
  10. Hayden, J. F., Johnson, L. R., Maickel, R. P.: Construction and implantation of a permanent cannula for making injections into the lateral ventricle of the rat brain. Life Sci. 5, 1509–1515 (1966)Google Scholar
  11. Holmes, S. W.: The spontaneous release of prostaglandins into the cerebral ventricles of the dog and the effect of external factors on this release. Br. J. Pharmacol. 38, 653–658 (1970)Google Scholar
  12. Horton, E. M., Main, I. H. M.: Identification of prostaglandins in central nervous tissues of the cat and chicken. Br. J. Pharmacol. Chemother. 30, 582–602 (1967)Google Scholar
  13. Lambert, G. A., Lang, W. L.: The effects of bradykinin and eledoisin injected into the cerebral ventricles of conscious rats. Eur. J. Pharmacol. 9, 383–386 (1970)Google Scholar
  14. McGiff, J. C., Terragno, N. A., Malik, K. U.: Release of a prostaglandin E-like substance from canine kidney by bradykinin: comparison with eledoisin. Circ. Res. 31, 36–43 (1972)Google Scholar
  15. Murthy, V. S., Waldron, T. L., Goldberg, M. E.: The mechanism of bradykinin potentiation after inhibiton of angiotensinconverting enzyme by SQ 14225 in conscious rabbits. Circ. Res. 43, Suppl. I, I-40–I-45 (1978)Google Scholar
  16. Ondetti, M. A., Rubin, B., Cushman, D. W.: Design of specific inhibitors of angiotensin converting enzyme: new class of orally active antihypertensive agents. Science 196, 441–444 (1977)Google Scholar
  17. Roth, M., Weitzman, A. F., Piquilloud, Y.: Converting enzyme content of different tissues of the rat. Experientia 25, 2443–2450 (1969)Google Scholar
  18. Samuelsson, B.: Identification of a smooth muscle-stimulating factor in bovine brain. Biochim. Biophys. Acta 84, 218–219 (1964)Google Scholar
  19. Vane, J. R.: Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature New Biol. 231, 232–235 (1971)Google Scholar
  20. Wolfe, L. S., Rostworowski, K., Pappius, H. M.: The endogenous biosynthesis of prostaglandins by brain tissue in vitro. Can. J. Biochem. 54, 629–640 (1976)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Kazuoki Kondo
    • 1
  • Tetsuji Okuno
    • 1
  • Konosuke Konishi
    • 1
  • Takao Saruta
    • 1
  • Eiichi Kato
    • 1
  1. 1.Department of Internal Medicine, School of MedicineKeto UniversityTokyoJapan

Personalised recommendations