Biochemical Genetics

, Volume 24, Issue 9–10, pp 775–793 | Cite as

Peptidases in Drosophila melanogaster. I. Characterization of dipeptidase and leucine aminopeptidase activities

  • N. A. Hall
Article

Abstract

Four major peptidases of Drosophila melanogaster have been described and distinguished by their electrophoretic mobilities, molecular weights, net electrical charges, and substrate specificities. The previously described leucine aminopeptidase, LAP D, consists of at least two isozymes, designated here LAP P and LAP G. In pupae most LAP activity results from LAP P (pupal); in larvae and adults, in contrast, most LAP activity results from LAP G (gut). These two LAPs may be separated by electrophoresis in the presence of the nonionic detergent Triton X-100. A specific assay for LAP P, which exploits the large difference between the net electrical charge of LAP P and that of LAP G, is described. The activity levels of two dipeptidases, Dip A and Dip B, were high in all the postembryonic stages examined. Specific assays for Dip A and Dip B were used to show that for each of these isozymes, the activity in an adult is proportional to gene dosage.

Key words

dipeptidases leucine aminopeptidases Drosophila melanogaster genetic localization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beckman, L., and Johnson, F. M. (1964). Genetic control of aminopeptidases in Drosophila melanogaster. Hereditas 51221.Google Scholar
  2. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72248.Google Scholar
  3. Falke, E. V., and MacIntyre, R. J. (1966). The genetic localization of a non-specific Leucine aminopeptidase in Drosophila melanogaster. Dros. Inform. Serv. 41169.Google Scholar
  4. Hall, N. A. (1983). A Genetic and Developmental Analysis of Peptidases in Drosophila melanogaster, D. Phil. thesis, Sussex University, Sussex.Google Scholar
  5. Laurie-Ahlberg, C. C. (1982). Genetic, ontogenetic and tissue specific variation of dipeptidases in Drosophila melanogaster. Biochem. Genet. 20407.Google Scholar
  6. Lewis, E. (1960). A new standard food medium. Dros. Inform. Serv. 34117.Google Scholar
  7. Lewis, W. H. P., and Harris, H. (1967). Human red cell peptidases. Nature 215351.Google Scholar
  8. Lindsley, D. L., and Grell, E. H. (1968). Genetic variations of Drosophila melanogaster. Carnegie Inst. of Washington Publ. No. 627.Google Scholar
  9. Lindsley, D. L., Sandler, L., Baker, B. S., Carpenter, A. T. C., Denell, R. E., Hall, J. C., Jacobs, P. A., Miklos, G. L. G., Davis, B. K., Gethmann, K. C., Hardy, R. W., Hessler, A., Miller, S. M., Nozawa, H., Parry, D. M., and Gould-Samero, M. (1972). Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics 71157.Google Scholar
  10. McClure, W. R. (1969). A kinetic analysis of coupled enzyme assays. Biochemistry 82782.Google Scholar
  11. Nicholson, J. A., and Kim, Y. S. (1975). A one-step L-amino acid oxidase assay for intestinal peptide hydrolase activity. Anal. Biochem. 63110.Google Scholar
  12. Ohnishi, S., and Voelker, R. A. (1981). Comparative studies of allozyme loci in Drosophila simulans and Drosophila melanogaster. Biochem. Gen. 1975.Google Scholar
  13. Sakai, R. K., Tung, D. A., and Scandalios, J. G. (1969). Developmental genetic studies of aminopeptidases in Drosophila melanogaster. Mol. Gen. Genet. 10524.Google Scholar
  14. Studier, F. W. (1973). Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J. Mol. Biol. 79237.Google Scholar
  15. Travaglini, E. G., and Tartof, D. (1972). “Instant” Drosophila: A method for mass culturing large numbers of Drosophila. Dros. Inform. Serv. 48157.Google Scholar
  16. Voelker, R. A., and Langley, C. H. (1978). Dipeptidase A: A highly polymorphic locus in Drosophila melanogaster. Genetica 49233.Google Scholar
  17. Walker, V. K., and Williamson, J. H. (1980). Ontogeny and tissue distribution of leucine aminopeptidases in Drosophila melanogaster. Insect Biochem. 10543.Google Scholar
  18. Walker, V. K., Geer, B. W., and Williamson, J. H. (1980). Dietary modulation and histochemical localization of leucine aminopeptidases in Drosophila melanogaster. Insect Biochem. 10535.Google Scholar
  19. Walker, V. K., Williamson, J. H., and Church, R. B. (1981). Differential characterisation of two leucine aminopeptidases in Drosophila melanogaster. Biochem. Genet. 1947.Google Scholar
  20. Wilson, T. G. (1981). A mosaic analysis of the apterous mutation of Drosophila melanogaster. Dev. Biol. 85434.Google Scholar
  21. Zalokar, M., and Erk, I. (1976). Division and migration of nuclei during early embryogenesis of Drosophila melanogaster. J. Micro. Biol. 2597.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • N. A. Hall
    • 1
  1. 1.School of Biological SciencesUniversity of SussexFalmerUK

Personalised recommendations