Biochemical Genetics

, Volume 24, Issue 9–10, pp 683–699 | Cite as

Genetic and developmental characterization of the aldox-2 locus of Drosophila melanogaster

  • Roy G. Meidinger
  • Michael M. Bentley
Article

Abstract

The aldox-2 locus in Drosophila melanogaster has been shown to affect differentially three molybdoenzymes, aldehyde oxidase, pyridoxal oxidase, and xanthine dehydrogenase. These effects are most obvious at times surrounding the pupal-adult boundary, when the normal organism accumulates large amounts of these enzymes in their active form. This locus has been more precisely mapped genetically to 2–82.9±2.1, with complete concordance between the effects of all recombinant chromosomes on all three enzymes. The cytogenetic location has also been determined to be between 52E and 54E8, with the likelihood that it lies within the region 54B1-54E8. The aldox-2 mutant allele has no visible phenotype and is completely recessive for enzyme effects at all stages tested. Segmental duplication of this region, including the aldox-2+ allele, has no apparent effect on the visible phenotype or the enzymatic activity. The mutant aldox-2 allele has no effect on the developmental expression of two unrelated enzymes, 6-phosphogluconate dehydrogenase and NADP+-dependent isocitrate dehydrogenase. The effects of this locus on aldehyde oxidase, xanthine dehydrogenase, and pyridoxal oxidase suggest that this locus may code for a product involved in the synthesis of the molybdenum cofactor common to these enzymes.

Key words

Drosophila aldox-2 molybdoenzymes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bahn, E. (1967). Crossing over in the chromosomal region determining amylase isozymes in Drosophila melanogaster. Hereditas 581Google Scholar
  2. Baker, B. (1973). The maternal and zygotic control of development by cinnamon a new mutant in Drosophila melanogaster. Dev. Biol. 33429.Google Scholar
  3. Bentley, M. M. (1986). Analysis of Aldox n alleles isolated from natural populations of Drosphila melanogaster. Biochem. Genet. 24291.Google Scholar
  4. Bentley, M. M., and Williamson, J. H. (1979a). A new mutant affecting aldehyde oxidase in Drosophila melanogaster. Z. Naturforsch. 34c304.Google Scholar
  5. Bentley, M. M., and Williamson, J. H. (1979b). The control of aldehyde oxidase and xanthine dehydrogenase activities by the cinnamon gene in Drosophila melanogaster. Can. J. Genet. Cytol. 21457.Google Scholar
  6. Bentley, M. M., and Williamson, J. H. (1982a). The developmental analysis of aldehyde oxidase activity in cin allelic heterozygotes of Drosophila melanogaster. Can. J. Genet. Cytol. 241.Google Scholar
  7. Bentley, M. M., and Williamson, J. H. (1982b). The control of aldehyde oxidase and xanthine dehydrogenase activities and CRM levels by the ma-1 locus in Drosophila melanogaster. Can. J. Genet. Cytol. 2411.Google Scholar
  8. Bentley, M. M., Williamson, J. H., and Oliver, M. J. (1981). The effects of molybdate, tungstate and lxd on aldehyde oxidase and xanthine dehydrogenase in Drosophila melanogaster. Can. J. Genet. Cytol. 23597.Google Scholar
  9. Bodenstein, D. (1950). The postembryonic development of Drosophila. In Demerec, M. (ed.), The Biology of Drosophila Wiley, New York, pp. 275–367 (reprinted by Hafner, 1965).Google Scholar
  10. Bogaart, A. M., and Bernini, C. F. (1981). The molybdoenzyme system of Drosophila melanogaster. I. Sulfite oxidase: Identification and properties. Expression of the enzyme in maroon-like (ma-1), low-xanthine dehydrogenase (lxd) and cinnamon (cin) flies. Biochem. Genet. 19929.Google Scholar
  11. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72248.Google Scholar
  12. Browder, L. W., and Williamson, J. H. (1976). The effects of cinnamon on xanthine dehydrogenase, aldehyde oxidase and pyridoxal activity during development in Drosophila melanogaster. Dev. Biol. 53241.Google Scholar
  13. Chovnick, A., Gelbart, W., and McCarron, M. (1977). Organization of the rosy locus in Drosophila melanogaster. Cell 111.Google Scholar
  14. Chovnick, A., McCarron, M., Hilliker, A., O'Donnell, J., Gelbart, W., and Clark, S. (1978). Gene organization in Drosophila. Cold Spring Harbor Symp. Quant. Biol. 421011.Google Scholar
  15. Clark, S. H., Daniels, S., Rushlow, C. A., Hilliker, A. J., and Chovnick, A. (1984). Tissue specific and pretranslational character of variants of the rosy locus control element in Drosophila melanogaster. Genetics 108953.Google Scholar
  16. Collins, J. F., and Glassman, E. (1969). A third locus (lpo) affecting pyridoxal oxidase in Drosophila melanogaster. Genetics 61833.Google Scholar
  17. Courtright, J. B. (1967). Polygenic control of aldehyde oxidase in Drosophila. Genetics 5725.Google Scholar
  18. Cypher, J. J., Tedesco, J. L., Courtright, J. B., and Kumaran, H. K. (1982). Tissue-specific and substrate specific detection of aldehyde and pyridoxal oxidase in larval and imaginal tissues of Drosophila melanogaster. Biochem. Genet. 20315.Google Scholar
  19. Dickinson, W. J. (1970). The genetics of aldehyde oxidase in Drosophila melanogaster. Genetics 66487.Google Scholar
  20. Dickinson, W. J. (1975). A genetic locus affecting the developmental expression of an enzyme in Drosophila melanogaster. Dev. Biol. 42131.Google Scholar
  21. Dickinson, W. J. (1980). Complex cis-acting regulatory genes demonstrated in Drosophila hybrids. Dev. Genet. 1229.Google Scholar
  22. Dickinson, W. J., and Weisbrod, E. (1976). Gene regulation in Drosophila: Independent expression of closely linked related structural loci. Biochem. Genet. 14709.Google Scholar
  23. Edwards, T. C. R., and Candido, E. P. M. (1977). Xanthine dehydrogenase from Drosophila melanogaster: A comparison of the kinetic parameters of the pure enzyme from two wild type isoalleles differing at a putative regulatory site. Mol. Gen. Genet. 1541.Google Scholar
  24. Finnerty, V. (1976). Genetic units of Drosophila melanogaster—Simple cistrons. In Ashburner, M., and Novitski, E. (eds.), The Genetics and Biology of Drosophila, Vol 1b Academic Press, London, pp. 721–765.Google Scholar
  25. Fox, D. J. (1971). The soluble citric acid cycle enzymes of Drosophila melanogaster. I. Genetics and ontogeny of NADP-linked isocitrate dehydrogenase. Biochem. Genet. 569.Google Scholar
  26. Gemmill, R. M., Levy, J. N., and Doane, W. W. (1985). Molecular cloning of (α)-amylase genes from Drosophila melanogaster. I. Clone isolation by use of a mouse probe. Genetics 110299.Google Scholar
  27. Glassman, E., and Mitchell, H. K. (1959). Mutants of Drosophila melanogaster deficient in xanthine dehydrogenase. Genetics 44153.Google Scholar
  28. Grell, E. H. (1962). The dose effect of ma-1 and ry on xanthine dehydrogenase activity in Drosophila melanogaster. Zeitschrift Vererbungslehre 93371.Google Scholar
  29. Horie, Y. (1967). Dehydrogenase in carbohydrate metabolism in larvae of the silkworm, Bombyx mori L. J. Insect Physiol. 131163.Google Scholar
  30. Keller, E. C., and Glassman, E. (1964a). Xanthine dehydrogenase: Differences in activity among Drosophila strains. Science 1431.Google Scholar
  31. Keller, E. C., and Glassman, E. (1964b). A third locus (lxd) affecting xanthine dehydrogenase in Drosophila melanogaster. Genetics 49663.Google Scholar
  32. Kuhn, D. T., Fogerty, S. C., Eskens, A. A. C., and Sprey, Th. E. (1983). Developmental compartments in Drosophila melanogaster wing disc. Dev. Biol. 95399.Google Scholar
  33. Laurell, C. B. (1966). Quantitative estimation of protein by electrophoresis in agarose gel containing antibodies. Anal. Biochem. 1545.Google Scholar
  34. Lewis, E. B. (1960). A new standard for food medium. Dros. Inform. Serv. 34117.Google Scholar
  35. Lindsley, D. L., and Grell, E. H. (1968). Genetic Variations of Drosophila melanogaster, Carnegie Inst. Wash. Publ. 627.Google Scholar
  36. Lindsley, D. L., Sandler, L., Baker, B. S., Carpenter, A. T. C., Denell, R. E., Hall, J. C., Jacobs, P. A. Miklos, G. L. G., Davis, B. K., Gethmann, R. C., Hardy, R. W., Hessler, A., Miller, S. M., Nozawa, H., Parry, D. M., and Gould-Somero, M. (1972). Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics 71157.Google Scholar
  37. Meidinger, E. M., and Williamson, J. H. (1978). Genetic control of aldehyde oxidase and cross-reacting material in Drosophila melanogaster. Can. J. Genet. Cytol. 20489.Google Scholar
  38. O'Brien, S. J., and MacIntyre, R. J. (1978). Genetics and biochemistry of enzymes and specific proteins of Drosophila. In Ashburner, M., and Wright, T. R. F. (eds.), The Genetics and Biology of Drosophila, Vol. 2a Acaademic Press, New York, pp. 395–551.Google Scholar
  39. Rohlf, F. J., and Sokal, R. R. (1969). Statistical Tables W. H. Freeman, San Francisco.Google Scholar
  40. Schott, D. R., Baldwin, M. C. and Finnerty, V. (1986). Molybdenum hydroxylases in Drosophila. III. Further characterization of the low xanthine dehydrogenase gene. Biochem. Genet. 24 (in press).Google Scholar
  41. Sokal, R. R., and Rohlf, F. J. (1969). In Biometry: The Principles and Practice of Statistics in Biological Research W. H. Freeman, San Francisco.Google Scholar
  42. Sperlich, D., and Pinsker, W. (1983). A Y-translocation method for localizing enzyme genes on Drosophila polytene chromosomes. Experientia 40203.Google Scholar
  43. Wahl, R. C., Warner, C. K., Finnerty, V., and Rajagopalan, K. V. (1982). Drosophila melanogaster ma-1 mutants are defective in the sulfuration of desulfo Mo hydroxylases. J. Biol. Chem. 2573958.Google Scholar
  44. Warner, C. K., and Finnerty, V. (1981). Molybdenum hydroxylases in Drosophila. II. Molybdenum cofactor in xanthine dehydrogenase, aldehyde oxidase and pyridoxal oxidase. Mol. Gen. Genet. 18492.Google Scholar
  45. Zar, J. H. (1984). Biostatistical Analysis 2nd ed., Prentice-Hall, Englewood Cliffs, N.J.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Roy G. Meidinger
    • 1
  • Michael M. Bentley
    • 1
  1. 1.Department of BiologyUniversity of CalgaryCalgaryCanada

Personalised recommendations