Biochemical Genetics

, Volume 24, Issue 9–10, pp 643–656 | Cite as

Characterization of alcohol dehydrogenase in young soybean seedlings

  • Ryszard Brzezinski
  • Brian G. Talbot
  • Douglas Brown
  • Danuta Klimuszko
  • Stephen D. Blakeley
  • Jean-Paul Thirion


Molecular properties of alcohol dehydrogenase (ADH) were examined in young soybean seedlings. Soybean radicle tissue is ADH-rich. Enzyme specific activity decreases slowly with the development of roots and becomes almost undetectable when the first true leaves appear. Soybean ADH was not found to be inducible by flooding. 2,4-Dichlorophenoxyacetic acid (2,4-D) treatment increased ADH specific activity as much as 14-fold. Only one ADH isozyme was detected by isoelectric focusing. By DNA-DNA hybridization, soybean ADH genomic sequences were shown to be partly homologous to maize ADH1 cDNA. The presence of more than one Adh gene in soybean is discussed.

Key words

alcohol dehydrogenase soybean flooding isozymes DNA homology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, C., and Rinne, R. W. (1982). Stress protein formation: Gene expression and environmental interaction with evolutionary significance. Int. Rev. Cytol. 79305.Google Scholar
  2. Barthova, J., and Leblova, S. (1978). Lactate dehydrogenase from germinanting plants. In Hook, D. D., and Crawford, R. M. M. (eds.), Plant Life in Anaerobic Environments Ann Arbor Science, Ann Arbor, Mich., p. 463.Google Scholar
  3. Beremand, M. (1979). Soybean Alcohol Dehydrogenases. Complexity, Subunit Composition and Relatedness to Other Alcohol Dehydrogenases Ph.D. thesis, Indiana University, Bloomington.Google Scholar
  4. Birnboim, H. C. (1983). A rapid alkaline extraction method for the isolation of plasmid DNA. Methods Enzymol. 100243.Google Scholar
  5. Czarnecka, E., Edelman, L., Schöffl, F., and Key, J. L. (1984). Comparative analysis of physical stress responses in soybean seedlings using cloned heat shock cDNAs. Plant Mol. Biol. 345.Google Scholar
  6. Dennis, E. S., Gerlach, W. L., Pryor, A. J., Bennetzen, J. L., Inglis, A., Llewellyn, D., Sachs, M. M., Ferl, R. J., and Peacock, W. J. (1984). Molecular analysis of the alcohol dehydrogenase (ADH1) gene of maize. Nucleic Acids Res. 123983.Google Scholar
  7. Dennis, E. S., Sachs, M. M., Gerlach, W. L., Finnegan, E. J., and Peacock, W. J. (1985). Molecular analysis of the alcohol dehydrogenase 2 (ADH2) gene of maize. Nucleic Acids Res. 13727.Google Scholar
  8. Dolferus, R., and Jacobs, M. (1984). Polymorphism of alcohol dehydrogenase in Arabidopsis thaliana (L.) Heynh: Genetical and biochemical characterization. Biochem. Genet. 22817.Google Scholar
  9. Dolferus, R., Marbaix, G., and Jacobs, M. (1985). Alcohol dehydrogenase in Arabidopsis: Analysis of the induction phenomenon in plantlets and tissue cultures. Mol. Gen. Genet. 199256.Google Scholar
  10. Drew, M. C., and Lynch, J. M. (1980). Soil anaerobiosis, microorganisms and root function. Annu. Rev. Phytopathol. 1837.Google Scholar
  11. Ferl, R. J., Brennan, M. D., and Schwartz, D. (1980). In vitro translation of maize ADH: Evidence for the anaerobic induction of mRNA. Biochem. Genet. 18681.Google Scholar
  12. Ferl, R. J. (1985). Modulation of chromatin structure in the regulation of the maize Adhl gene. Mol. Gen. Genet. 200207.Google Scholar
  13. Freeling, M. (1973). Simultaneous induction by anaerobiosis or 2,4-D of multiple enzymes specified by two unlinked genes: Differential ADH1-ADH2 expression in maize. Mol. Gen. Genet. 127215.Google Scholar
  14. Freeling, M., and Bennett, D. C. (1985). Maize Adh1. Annu. Rev. Genet. 19297.Google Scholar
  15. Gerlach, W. L., Pryor, A. J., Dennis, E. S., Ferl, R. J., Sachs, M. M., and Peacock, W. J. (1982). cDNA cloning and induction of the alcohol dehydrogenase gene (ADH1) of maize. Proc. Natl. Acad. Sci. USA 792981.Google Scholar
  16. Gottlieb, L. D. (1982). Conservation and duplication of isozymes in plants. Science 216373.Google Scholar
  17. Jenkin, L. E. T., and ap Rees, T. (1983). Effects of anoxia and flooding on alcohol dehydrogenase in roots of Glyceria maxima and Pisum sativum. Phytochemistry 222389.Google Scholar
  18. Lai, Y.-K., and Scandalios, J. G. (1980). Genetic determination of the developmental program for maize scultellar alcohol dehydrogenase: Involvement of a recessive, trans-acting, temporal-regulatory gene. Dev. Gen. 1311.Google Scholar
  19. Leblova, S. (1978). Pyruvate conversions in higher plants during natural anaerobiosis. In Hook, D. D., and Crawford, R. M. M. (eds.), Plant Life in Anaerobic Environments Ann Arbor Science. Ann Arbor, Mich., p. 155.Google Scholar
  20. Leblova, S., and Perglerova, E. (1976). Soybean alcohol dehydrogenase. Phytochemistry 15813.Google Scholar
  21. Marshall, D. R., Broué, P., and Oram, R. N. (1974). Genetic control of alcohol dehydrogenase isozymes in narrow-leafed lupins. J. Hered. 65198.Google Scholar
  22. Rigby, P. W. J., Dieckmann, M., Rhodes, C., and Berg, P. (1977). Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase 1. J. Mol. Biol. 113237.Google Scholar
  23. Roberts, J. K. M., Callis, J., Jardetzky, O., Walbot, V., and Freeling, M. (1984). Cytoplasmic acidosis as a determinant of flooding intolerance in plants. Proc. Natl. Acad. Sci. USA 816029.Google Scholar
  24. Sachs, M. M., and Freeling, M. (1978). Selective synthesis of alcohol dehydrogenase during anaerobic treatment of maize. Mol. Gen. Genet. 161111.Google Scholar
  25. Sachs, M. M., Freeling, M., and Okimoto, R. (1980). The anaerobic proteins of maize. Cell 20761.Google Scholar
  26. Singh, L., and Jones, K. W. (1984). The use of heparin as a simple cost-effective means of controlling background in nucleic acid hybridization procedures. Nucleic Acids Res. 125627.Google Scholar
  27. Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98503.Google Scholar
  28. Talbot, B. G., and Thirion, J.-P. (1979). Comparison of the properties of the alcohol dehydrogenases from wild-type and mutant Chinese hamster somatic cells. Biochem. Genet. 17807.Google Scholar
  29. Talbot, B. G., Qureshi, A. A., Cohen, R., and Thirion, J.-P. (1981). Purification and properties of two distinct groups of ADH isozymes from Chinese hamster liver. Biochem. Genet. 19813.Google Scholar
  30. Tanksley, S. D., and Jones, R. A. (1981). Effects of O2 stress on tomato alcohol dehydrogenase activity: Description of a second ADH coding gene. Biochem. Genet. 19397.Google Scholar
  31. Thirion, J.-P., and Talbot, B. (1978). Alcohol dehydrogenase mutants of Chinese hamster somatic cells resistant to allyl alcohol. Genetics 88343.Google Scholar
  32. Torres, A. M., Diedenhofen, V., and Johnstone, I. M. (1977). The early allele of alcohol dehydrogenase in sunflower populations. J. Hered. 6811.Google Scholar
  33. Van Driessche, E., Beeckmans, S., Dejaegere, R., and Kanarek, L. (1984). Thiourea: The antioxidant of choice for the purification of proteins from phenol-rich plant tissues. Anal. Biochem. 141184.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Ryszard Brzezinski
    • 1
  • Brian G. Talbot
    • 2
  • Douglas Brown
    • 3
  • Danuta Klimuszko
    • 1
  • Stephen D. Blakeley
    • 1
  • Jean-Paul Thirion
    • 1
  1. 1.Départment de Microbiologie, Faculté de MédicineUniversité de SherbrookeSherbrookeCanada
  2. 2.Départment de Biochimie, Faculté de MédicineUniversité de SherbrookeSherbrookeCanada
  3. 3.Department of BiologyBishop's UniversityLennoxvilleCanada

Personalised recommendations