Biochemical Genetics

, Volume 25, Issue 1–2, pp 7–25 | Cite as

The effects of recessive lethal Notch mutations of Drosophila melanogaster on flavoprotein enzyme activities whose inhibitions cause Notch-like phenocopies

  • George E. W. Thörig
  • Pieter W. H. Heinstra
  • Barbara L. A. de Ruiter
  • Willem Scharloo


The biochemical action of the Notch locus whose mutants cause morphological aberrations in flies, viz., notches of wings and bristle multiplication, has been analyzed (1) by the addition to the food medium of enzyme inhibitors causing phenocopies of Notch and (2) by comparison of enzyme activity patterns of Notch mutants with different degrees of phenotypic expression. Notch phenocopies were induced by inhibitors of enzyme activities in two biochemical pathways: (1) the de novo pyrimidine synthesis by 5-methylorotate (inhibitor of dihydroorotate dehydrogenase) and (2) the choline shunt by amobarbital (inhibits choline dehydrogenase) and methoxyacetate (inhibits sarcosine dehydrogenase). The inhibition of de novo pyrimidine synthesis prevents the production of deoxyuridine-5-phosphate, the substrate for the synthesis of thymidine-5-phosphate via thymidylate synthase, whereas the inhibition of the choline shunt prevents the production of HCHO groups and glycine, both of which are involved in the synthesis of 5,10-methylenetetrahydrofolate, which is a cofactor of thymidylate synthase. It was already known that the inhibition of the latter enzyme in vivo induces Notch phenocopies. Notch mutants with a strong morphological expression show low enzyme activities for dihydroorotate dehydrogenase and choline dehydrogenase. Both are flavoprotein enzymes linked to the respiratory chain. The correspondence between the low enzyme activities in Notch mutants with a strong morphological expression and the phenocopying effect of antimetabolites on these enzymes in the two biochemical pathways involved strongly suggests that the morphological effects of Notch on flies are a consequence of lowered activities of choline dehydrogenase and dihydroorotate dehydrogenase.

Key words

Drosophila melanogaster Notch locus wing morphology phenocopies choline dehydrogenase dihydroorotate dehydrogenase xanthine dehydrogenase (O2sarcosine dehydrogenase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akam, M. (1984). Neurogenesis in Drosophila: Notch mapping function obscure. Nature 307113.Google Scholar
  2. Aleman, V., and Handler, P. (1967). Dihydro-orotate dehydrogenase. I. General properties. J. Biol. Chem. 2424087.Google Scholar
  3. Bertschmann, M. (1955). Versuche zur phänokopierenden wirkung van chemicalien (Nitrogen-Mustard U.A.) bei Drosophila melanogaster. Z. indukt. Abstam. Vererb. 87229.Google Scholar
  4. Blakley, R. L. (1969). The biochemistry of folic acid and related pteridines. In Neuberger, A., and Tatum, E. L. (eds.), Frontiers of Biology North-Holland, Amsterdam, London, pp. 1–362.Google Scholar
  5. Bos, M., Scharloo, W., Bijlsma, R., Den Boer, I. M., and Den Hollander, J. (1969). Induction of morphological aberrations by enzyme inhibition in Drosophila melanogaster. Experientia 25811.Google Scholar
  6. Colowick, S. P., and Kaplan, N. O. (1968). In Methods in Enzymology, Vol. X. Oxidation and Phosphorylation Academic Press, New York, San Francisco, London, pp. 3–378.Google Scholar
  7. Eisses, K. Th., Schoonen, W. G. E. J., Scharloo, W., and Thörig, G. E. W. (1985). Evidence for a multiple function of the alcohol dehydrogenase allozyme ADH-71k of Drosophila melanogaster. Comp. Biochem. Physiol. 82B863.Google Scholar
  8. Eisses, K. Th., Heinstra, P. W. H., Scharloo, W., and Thörig, G. E. W. (1986). Induction of Notch-like phenocopies by methoxy acetate dependent on alcohol dehydrogenase allozymes of Drosophila melanogaster. Comp. Biochem. Physiol. 858759.Google Scholar
  9. Enzyme Nomenclature (1979). I.U.B. 1979, Academic Press, New York, San Francisco, London.Google Scholar
  10. Ernster, L., Jalling, O., Löw, H., and Lindberg, O. (1955). Alternative pathway of development and differentiation. In Runnström, J. (ed.), Experimental Cell Research Academic Press, New York.Google Scholar
  11. Ferris, G. F. (1950). External morphology of the adult. In Demerec, M. (ed.), Biology of Drosophila Wiley, New York, and Chapman & Hall, London, pp. 368–419.Google Scholar
  12. Finnerty, V. (1976). Genetic units of Drosophila- simple cistrons. In Novitsky, E., and Ashburner, M. (eds.), The Genetics and Biology of Drosophila, Academic Press, London, New York, San Francisco, Vol. 1b, pp. 721–765.Google Scholar
  13. Forrest, H. S., Glassman, E., and Mitchell, H. K. (1956). Conversion of 2-amino-4-hydroxypteridine to isoxanthopterin in Drosophila melanogaster. Science 124725.Google Scholar
  14. Friedmann, H. C., and Vennesland, B. (1960). Crystalline dihydro-orotate dehydrogenase. J. Biol. Chem. 3251526.Google Scholar
  15. Frisell, W. R., and MacKenzie, C. G. (1955). The binding sites of sarcosine oxidase. J. Biol. Chem. 217275.Google Scholar
  16. Galante, Y. M., and Hatefi, Y. (1979). Purification and molecular and enzymic properties of mitochondrial NADH dehydrogenase. Arch. Biochem. Biophys. 192559.Google Scholar
  17. Glassman, E., and Mitchell, H. K. (1959). Mutants of Drosophila melanogaster deficient in xanthine dehydrogenase. Genetics 44153.Google Scholar
  18. Guzman-Barron, E. S., Bartlett, G. R., and Baker-Miller, Z. (1948). The effect of nitrogen mustards on enzyme and tissue metabolism. I. The effect on enzymes. J. Exp. Med. 87489.Google Scholar
  19. Hoskins, D. D., and Bjur, R. A. (1964). The oxidation of N-methyl glycines by primate liver mitochondria. Assay, purification and characterization of sarcosine dehydrogenase. J. Biol. Chem. 2391856.Google Scholar
  20. Keller, E. C., and Glassman, E. (1965). Phenocopies of the ma-1 and ry mutants of Drosophila melanogaster: Inhibition in vivo of xanthine dehydrogenase by 4-hydroxy-pyrazolo (3,4-d) pyrimidine. Nature 208202.Google Scholar
  21. Kimura, T., and Singer, Th. P. (1962). Choline dehydrogenase from rat liver. In Colowick, S. P., and Kaplan, N. O. (eds.), Methods in Enzymology Academic Press, New York, London, Vol. V, pp. 562–570.Google Scholar
  22. Lehmann, R., Jiménez, F., Dietrich, U., and Campos-Ortega, J. A. (1983). On the phenotype and development of mutants of early neurogenesis in Drosophila melanogaster. Roux Arch. Dev. Biol. 19262.Google Scholar
  23. Li, J. C. (1927). The effect of chromosome aberrations on development in Drosophila melanogaster. Genetics 121.Google Scholar
  24. Lindsley, D. L., and Grell, E. H. (1968).Genetic variations of Drosophila melanogaster. Carnegie Institution, Washington, D.C., Publ. 627.Google Scholar
  25. Mittler, S., and Bennett, J. (1962). A simple food medium that requires no live yeast with the minimum of variables. Dros. Info. Service 36131.Google Scholar
  26. O'Byrne-Ring, N., and Duke, E. (1980) Biochemical and genetic basis of the response to 5-fluoro-uracil in Drosophila melanogaster. Biochem. Genet. 18717.Google Scholar
  27. Packer, L., Estabrook, R. W., Singer, Th.P., and Kimura, T. (1960). Studies on choline dehydrogenase. II. Components of the choline oxidase system and the site of action of amytal. J. Biol. Chem. 235536.Google Scholar
  28. Pomales, R., Bieber, S., Friedman, R., and Hitchings, G. H. (1963). Augmentation of the incorporation of hypoxanthine into nucleic acids by the administration of an inhibitor of xanthine oxidase. Biochim. Biophys. Acta 72119.Google Scholar
  29. Poulson, D. F. (1945). Chromosomal control of embryogenesis. Am. Nat. 79340.Google Scholar
  30. Poulson, D. F. (1968). The embryonic function of the Notch locus in Drosophila melanogaster. Proc. 12th Int. Cong. Genet. Tokyo 1143.Google Scholar
  31. Rawls, J. M., Jr. (1979). The enzymes for the de novo pyrimidine biosynthesis in Drosophila melanogaster: Their localization, properties and expression during development. Comp. Biochem. Physiol. 62B207.Google Scholar
  32. Rawls, J. M., Jr., Chambers, C. L., and Cohen, W. S. (1981). A small genetic region that controls dihydro-orotate dehydrogenase in Drosphila melanogaster. Biochem. Genet. 19115.Google Scholar
  33. Rendina, G., and Singer, P. (1959). Studies on choline dehydrogenase. I. Extraction in soluble form, assay, and some properties of the enzyme. J. Biol. Chem. 2341605.Google Scholar
  34. Rothschild, H. A., and Guzman-Barron, W. S. (1954). The oxidation of betaine aldehyde by betaine aldehyde dehydrogenase. J. Biol. Chem. 209511.Google Scholar
  35. Rowe, P. B., Tripp, E., and Craig, G. C. (1979). Folate metabolism in lectin activated human peripheral lymphocytes. In Kisliuk R. L., and Brown, G. M. (eds.), Chemistry and Biology of Pteridines Elsevier/North-Holland, New York, Amsterdam, Oxford, pp. 587–592.Google Scholar
  36. Sang, J. H. (1984). Genetics and Development Longman, London, New York.Google Scholar
  37. Schultz, J. (1956). The relation of the heterochromatic chromosome regions to the nucleic acids of the cell. Cold Spring Harb. Symp. XXI307.Google Scholar
  38. Thörig, G. E. W., and Scharloo, W. (1982). The action of the Notch locus in Drosophila melanogaster. III. Biochemical effects of recessive visible lethals on mitochondrial enzymes. Genetica 57219.Google Scholar
  39. Thörig, G. E. W., Heinstra, P. W. H., and Scharloo W. (1980). Biochemical action of the Notch locus. Genetics 94:s105.Google Scholar
  40. Thörig, G. E. W., Heinstra, P. W. H., and Scharloo, W. (1981a). The action of the Notch locus in Drosophila melanogaster. I. Effects of the Notch 8deficiency on mitochondrial enzymes. Mol. Gen. Genet. 18231.Google Scholar
  41. Thörig, G. E. W., Heinstra, P. W. H., and Scharloo, W. (1981b). The action of the Notch locus in Drosophila melanogaster. II. Biochemical effects of recessive lethals on mitochondrial enzymes. Genetics 9965.Google Scholar
  42. von Bahr-Lindström, H., Galante, Y. M., Persson, M., and Jörnvall, H. (1983). The primary structure of subunit II of NADH dehydrogenase from bovine-heart mitochondria. Eur. J. Biochem. 134145.Google Scholar
  43. Welshons, W. J., and von Halle, E. S. (1962). Pseudoallelism at the Notch locus in Drosophila. Genetics 47743.Google Scholar
  44. Wharton, K. A., Johansen, K. M., Xu, T., and Artavanis-Tsakonas, S. (1985). Nucleotide sequence from the neurogenic locus Notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43567.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • George E. W. Thörig
    • 1
  • Pieter W. H. Heinstra
    • 1
  • Barbara L. A. de Ruiter
    • 1
  • Willem Scharloo
    • 1
  1. 1.Department of Population and Evolutionary BiologyRijksuniversiteit UtrechtUtrechtThe Netherlands

Personalised recommendations