Advertisement

Biochemical Genetics

, Volume 20, Issue 11–12, pp 1105–1115 | Cite as

EcoRI restriction-site polymorphism of the albumin gene in different inbred strains of rat

  • Gérard Lucotte
  • Andras Gal
  • Jean-Louis Nahon
  • José M. Sala-Trepat
Article

Abstract

Two types of variant EcoRI restriction enzyme patterns of albumin-gene DNA fragments have been detected in different rat strains by agarose gel electrophoresis and Southern blot hybridization using 32P-labeled cloned rat albumin cDNA probes. The type I albumin gene variant is characteristic of the Sprague-Dawley strain, and type II is found in Buffalo rats. The occurrence of these variants is interpreted as the result of simple allelic polymorphism because they are inherited in a normal Mendelian fashion when crossing Sprague-Dawley and Buffalo rats. The distribution of the two genetic variants in various inbred strains of rat suggests that type I represents the original or ancestral form of the albumin gene and that type II appeared spontaneously during laboratory breeding.

Key words

albumin gene DNA polymorphism inbred rat strains Southern blots restriction endonucleases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avise, J. C., Lansman, R. A., and Shade, R. O. (1979). The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. I. Population structure and evolution in the genus Peromyscus. Genetics 92279.Google Scholar
  2. Bell, G. I., Karam, S. H., and Rutter, W. J. (1981). Polymorphic DNA region adjacent to the 5′-end of the human insulin gene. Proc. Natl. Acad. Sci. USA 785759.Google Scholar
  3. Blin, N., and Stafford, W. (1976). A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res. 92303.Google Scholar
  4. Engels, W. R. (1981). Estimating genetic divergence and genetic variability with restriction endonuclease. Proc. Natl. Acad. Sci. USA 786329.Google Scholar
  5. Festing, M. F. W. (1979). Origin of the laboratory rat. in Altman, P. L., and Katz, O. O. (eds.), Inbred and Genetically Defined Strains of Laboratory Animals. Part I. Mouse and Rat Fed. Am. Soc. Biol., Bethesda, Md.Google Scholar
  6. Goddard, J. M., Masters, J. N., Jones, S. S., Ashworth, W. D., and Wolstemholme, D. R. (1981). Nucleotide sequence variants of Rattas norvegicus mitochondrial DNA. Chromosoma 82595.Google Scholar
  7. Hughes, S. H., Payvar, F., Spector, O., Shimke, R. T., Robinson, H. L., Payne, G. S., Bishop, J. M., and Varmus, H. E. (1979). Heterogeneity of genetic loci in chickens: Analysis of endogenous viral and non viral genes by cleavage of DNA with restriction endonucleases. Cell 18347.Google Scholar
  8. Jeffreys, A. J. (1979). DNA sequence variants in the Gγ-, Aγ-, δ-, and β-globin genes of man. Cell 181.Google Scholar
  9. Lindsey, J. R. (1979). Historical Foundations of the laboratory rat. In Baker, H. S., Lindsey, J. R., and Weisbreth, S. H. (eds.), The Laboratory Rat. Vol. I. Biology and Diseases Academic Press, New York.Google Scholar
  10. Morris, H. P., and Wagner, B. P. (1968). Induction and transplantation of rat hepatomas with different growth rate. Methods Cancer Res. 4125.Google Scholar
  11. Nahon, J. L., Gal, A., Frain, M., Sell, S., and Sala-Trepat, J. M. (1982). No evidence for post-transcriptional control of albumin and α-fetoprotein gene expression in developing rat liver and neoplasia. Nucleic Acids Res. 101895.Google Scholar
  12. Nei, M., and Tajima, F. (1981). DNA polymorphism detectable by restriction endonucleases. Genetics 97145.Google Scholar
  13. Potter, S. S., Newbold, J. E., Hutchinson, C. A., and Edgell, M. H. (1975). Specific cleavage analysis of mammalian mitochondrial DNA. Proc. Natl. Acad. Sci. USA 724496.Google Scholar
  14. Sala-Trepat, J. M., Sargent, T. D., Sell, S., and Bonner, J. (1979a). α-Fetoprotein and albumin genes of rats: No evidence for amplification-deletion or rearrangement in rat liver carcinogenesis. Proc. Natl. Acad. Sci. USA 76695.Google Scholar
  15. Sala-Trepat, J. M., Dever, J., Sargent, J. D., Thomas, K., Sell, S., and Bonner, J. (1979b). Changes in expression of albumin and α-fetoprotein genes during rat liver development and neoplasia. Biochemistry 182167.Google Scholar
  16. Sargent, T. D., Wu, J. R., Sala-Trepat, J. M., Wallace, R. B., Reyes, A. A., and Bonner, J. (1979). The rat serum albumin gene: Analysis of cloned sequences. Proc. Natl. Acad. Sci. USA 763256.Google Scholar
  17. Sargent, T. D., Jagodzinski, L. L., Yang, M., and Bonner, J. (1981). Fine structure and evolution of the rat serum albumin. Mol. Cell Biol. 1871.Google Scholar
  18. Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98503.Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Gérard Lucotte
    • 1
  • Andras Gal
    • 1
  • Jean-Louis Nahon
    • 1
  • José M. Sala-Trepat
    • 1
  1. 1.Laboratoire d'Enzymologie du C.N.R.S.Gif-sur-YvetteFrance

Personalised recommendations