Skip to main content
Log in

Cereal prolamin evolution and homology revealed by sequence analysis

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Prolamin mixtures were isolated from oats, rice, normal and high-lysine sorghum, two varieties of pearl millet, two strains of teosinte, and gamma grass and subjected to NH2-terminal amino acid sequence determinations. In each case (except for rice, whose prolamins apparently have blocked or unavailable NH2-terminal residues), primarily a single sequence was observed despite significant heterogeneity, suggesting that prolamin homology in each cereal arose through duplication and mutation of a single ancestral gene. Comparisons were then made to prolamin sequences previously determined for wheat, corn, barley, and rye. Within genera, different varieties or subspecies exhibited few differences, but more distantly related genera, subtribes, and tribes showed increasingly large differences. Within the subfamily Festucoideae, no homology was apparent between prolamins of oats and those of the subtribe Triticinae (including wheat, rye, and barley, for which prolamin homology was previously demonstrated). Within the subfamily Panicoideae, corn was shown to be closely related to teosinte but more distantly to Tripsacum. Sorghum was shown to have diverged less from corn than had millet. These comparisons demonstrate that prolamin sequence analyses can successfully predict and clarify evolutionary relationships of cereals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Autran, J.-C. Lew, E. J.-L., Nimmo, C. C., and Kasarda, D. D. (1979). N-Terminal amino acid sequencing of prolamins from wheat and related species. Nature 282527.

    Google Scholar 

  • Bietz, J. A. (1981). Amino-terminal amino acid sequence of hordein. Cereal Chem. 5883.

    Google Scholar 

  • Bietz, J. A., and Wall, J. S. (1972). Wheat gluten subunits: Molecular weights determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Cereal Chem. 49416.

    Google Scholar 

  • Bietz, J. A., and Wall, J. S. (1975). The effect of various extractants on the subunit composition and associations of wheat glutenin. Cereal Chem. 52145.

    Google Scholar 

  • Bietz, J. A., and Wall, J. S. (1980). Identity of high molecular weight gliadin and ethanol-soluble glutenin subunits of wheat: relation to gluten structure. Cereal Chem. 57415.

    Google Scholar 

  • Bietz, J. A., Huebner, F. R., Sanderson, J. E., and Wall, J. S. (1977). Wheat gliadin homology revealed through N-terminal amino acid sequence analysis. Cereal Chem. 541070.

    Google Scholar 

  • Bietz, J. A., Paulis, J. W., and Wall, J. S. (1979). Zein subunit homology revealed through amino-terminal sequence analysis. Cereal Chem. 56327.

    Google Scholar 

  • Charbonnier, L., Terce-Laforgue, T., and Mosse, J. (1981). Rye prolamins: Extractability, separation, and characterization. J. Agr. Food Chem. 29968.

    Google Scholar 

  • Clayton, W. D. (1972). The awned genera of Andropogoneae; Studies in the Gramineae. XXXI. Kew Bull. 27457.

    Google Scholar 

  • De Wet, J. M. J., Harlan, J. R., Stalker, H. T., and Randrianasolo, A. V. (1978). The origin of tripsacoid maize (Zea mays L.). Evolution 32233.

    Google Scholar 

  • Doll, H., and Brown, A. H. D. (1979). Hordein variation in wild (Hordeum spontaneum) and cultivated (H. vulgare) barley. Can. J. Genet. Cytol. 21391.

    Google Scholar 

  • Esen, A., Bietz, J. A., Paulis, J. W., and Wall, J. S. (1982). Tandem repeats in N-terminal sequence of a proline-rich protein from corn endosperm. Nature 296678.

    Google Scholar 

  • Flavell, R., Rimpau, J., Smith, D. B., O'Dell, M., and Bedbrook, J. R. (1980). The evolution of plant genome structure. In Genome Organization and Expression in Plants, NATO Adv. Stud. Ser. A, Vol. 29, p. 35.

    Google Scholar 

  • Friedman, M., Krull, L. H., and Cavins, J. F. (1970). The chromatographic determination of cystine and cysteine residues in proteins as S-β-(4-pyridylethyl)cysteine. J. Biol. Chem. 2453868.

    Google Scholar 

  • Gates, F. T., III, Coligan, J. E., and Kindt, T. J. (1979). Complete amino acid sequence of rabbit β2-microglobulin. Biochemistry 182267.

    Google Scholar 

  • Geraghty, D., Peifer, M. A., Rubenstein, I., and Messing, J. (1981). The primary structure of a plant storage protein: Zein. Nucleic Acids Res. 95163.

    Google Scholar 

  • Harlan, J. R., De Wet, J. M. J., and Price, E. G. (1973). Comparative evolution of cereals. Evolution 27311.

    Google Scholar 

  • Hitchcock, A. S. (1950). Manual of Grasses of the United States 2nd ed. (revised by Chase, A.), U.S. Govt. Print. Off., Washington.

    Google Scholar 

  • Hoseney, R. C., and Varriano-Marston, E. (1980). Pearl millet: Its chemistry and utilization. In Inglett, G. E., and Munck, L. (eds.), Cereals for Food and Beverages Academic Press, New York, p. 461.

    Google Scholar 

  • Iltis, H. H., and Doebley, J. F. (1980). Taxonomy of Zea (Gramineae). II. Subspecific categories in the Zea mays complex and a generic synopsis. Am. J. Bot. 67994.

    Google Scholar 

  • Imamura, T., Konishi, K., Yokoyama, M., and Konishi, K. (1979). Highspeed gel filtration of polypeptides in sodium dodecyl sulfate. J. Biochem. 86639.

    Google Scholar 

  • Kasarda, D. D. (1980). Structure and properties of α-gliadins. Ann. Technol. Agr. 29151.

    Google Scholar 

  • Kasarda, D. D., Da Roza, D. A., and Ohms, J. I. (1974). N-Terminal sequence of α2-gliadin. Biochim. Biophys. Acta 351290.

    Google Scholar 

  • Kasarda, D. D., Bernardin, J. E., and Nimmo, C. C. (1976). Wheat proteins. In Pomeranz, Y. (ed.), Advances in Cereal Science and Technology, Vol. 1 Am. Assoc. Cereal Chem., St. Paul, Minn., p. 158.

    Google Scholar 

  • Kim, S. I., Charbonnier, L., and Mosse, J. (1978). Heterogeneity of avenin, the oat prolamin. Fractionation, molecular weight, and amino acid composition. Biochim. Biophys. Acta 53722.

    Google Scholar 

  • Landry, J., and Moureaux, T. (1980). Distribution and amino acid composition of protein groups located in different histological parts of maize grain. J. Agr. Food. Chem. 281186.

    Google Scholar 

  • Lee, C.-Y., and Kim, S.-K. (1977). Rice protein: Its composition, structure, occurrence, and biosynthesis. J. Kor. Agr. Chem. Soc. 20156.

    Google Scholar 

  • Mecham, D. K., Kasarda, D. D., and Qualset, C. O. (1978). Genetic aspects of wheat gliadin proteins. Biochem. Genet. 16831.

    Google Scholar 

  • Miflin, B. J., and Shewry, P. R. (1979). The biology and biochemistry of cereal seed prolamins. In Seed Protein Improvement in Cereals and Grain Legumes, Vol. I International Atomic Energy Agency, Vienna, p. 137.

    Google Scholar 

  • Morris, R., and Sears, E. R. (1967). The cytogenetics of wheat and its relatives. In Quisenberry, K. S., and Reitz, L. P. (eds.), Wheat and Wheat Improvement Am. Soc. Agron., Madison, Wis., p. 19.

    Google Scholar 

  • Nwasike, C. C., Mertz, E. T., Pickett, R. C., Glover, D. V., Chibber, B. A. K., and Van Scoyoc, S. W. (1979). Lysine level in solvent fractions of pearl millet. J. Agr. Food Chem. 271329.

    Google Scholar 

  • Padhye, V. W., and Salunkhe, D. K. (1979). Extraction and characterization of rice proteins. Cereal Chem. 56389.

    Google Scholar 

  • Patey, A. L., Evans, D. J., Tiplady, R., Byfield, P. G. H., and Matthews, E. W. (1975). Sequence comparison of gamma-gliadin and coeliac-toxic α-gliadin. Lancet 2(7937):718.

    Google Scholar 

  • Paulis, J. W., and Wall, J. S. (1977). Comparison of the protein compositions of selected corns and their wild relatives, teosinte and Tripsacum. J. Agr. Food Chem. 25265.

    Google Scholar 

  • Paulis, J. W., and Wall, J. S. (1979). Distribution and electrophoretic properties of alcohol-soluble proteins in normal and high-lysine sorghums. Cereal Chem. 5620.

    Google Scholar 

  • Paulis, J. W., Bietz, J. A., and Wall, J. S. (1975). Corn protein subunits: Molecular weights determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J. Agr. Food Chem. 23197.

    Google Scholar 

  • Pederson, K., Bloom, K. S., Anderson, J. N., Glover, D. V., and Larkins, B. A. (1980). Analysis of the complexity and frequency of zein genes in the maize genome. Biochemistry 191644.

    Google Scholar 

  • Sakamoto, S. (1973). Patterns of phylogenetic differentiation in the tribe Triticeae. Seiken Ziho 2411.

    Google Scholar 

  • Schmitt, J. M., and Svendsen, I. (1980a). Amino acid sequences of hordein polypeptides. Carlsberg Res. Commun. 45143.

    Google Scholar 

  • Schmitt, J. M., and Svendsen, I. (1980b). Partial amino acid sequence from hordein polypeptide B1. Carlsberg Res. Commun. 45549.

    Google Scholar 

  • Shewry, P. R., Autran, J.-C., Nimmo, C. C., Lew, E. J.-L., and Kasarda, D. D. (1980a). N-Terminal amino acid sequence homology of storage protein components from barley and a diploid wheat. Nature 286520.

    Google Scholar 

  • Shewry, P. R., March, J. F., and Miflin, B. J. (1980b). N-Terminal amino acid sequence of C hordein. Phytochemistry 192113.

    Google Scholar 

  • Smith, J. S. C., and Lester, R. N. (1980). Biochemical systematics and evolution of Zea, Tripsacum, and related genera. Econ. Bot. 34201.

    Google Scholar 

  • Sozinov, A. A., Stelmakh, A. F., and Rybalka, A. I. (1978). Genetic analysis of gliadins in common wheat varieties. Genetika 141955.

    Google Scholar 

  • Summers, M. R., Smythers, G. W., and Oroszlan, S. (1973). Thin-layer chromatography of sub-nanomole amounts of phenylthiohydantoin (PTH) amino acids on polyamide sheets. Anal. Biochem. 53624.

    Google Scholar 

  • Swaminathan, M. S., Naik, M. S., Kaul, A. K., and Austin, A. (1970). Choice of strategy for the genetic upgrading of protein properties in cereals, millets, and pulses. In Improving Plant Protein By Nuclear Techniques International Atomic Energy Agency, Vienna, p. 165.

    Google Scholar 

  • Tanaka, K., Sugimoto, T., Ogawa, M., and Kasai, Z. (1980). Isolation and characterization of two types of protein bodies in the rice endosperm. Agr. Biol. Chem. 441633.

    Google Scholar 

  • Van Beeumen, J., Van Damme, J., Tempst, P., and De Ley, J. (1980). An isochratic liquid chromatographic analysis of all the common PTH-amino acids. In Burr, C. (ed.), Methods in Peptide and Protein Sequence Analysis Elsevier/North-Holland, Amsterdam, p. 503.

    Google Scholar 

  • Viotti, A., Sala, E., Marotta, R., Alberi, P., Balducci, C., and Soave, C. (1979). Genes and mRNAs coding for zein polypeptides in Zea mays. Eur. J. Biochem. 102211.

    Google Scholar 

  • Viotti, A., Pogna, N. E., Balducci, C., and Durante, M. (1980). Chromosomal localization of zein genes by in situ hybridization in Zea mays. Mol. Gen. Genet. 17835.

    Google Scholar 

  • Wall, J. S., and Paulis, J. W. (1978). Corn and sorghum grain proteins. In Pomeranz, Y. (ed.), Advances in Cereal Science and Technology, Vol. 2 Am. Assoc. Cereal Chem., St. Paul, Minn., p. 135.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bietz, J.A. Cereal prolamin evolution and homology revealed by sequence analysis. Biochem Genet 20, 1039–1053 (1982). https://doi.org/10.1007/BF00498931

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00498931

Key words

Navigation