Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 293, Issue 1, pp 25–29 | Cite as

Inhibition of glucose phosphorylation in rat brain by thiopental

  • L. Bielicki
  • J. Krieglstein


The purpose of the present investigation was to shed some light on the suppression of the glycolytic pathway by anesthetics. The antimetabolite 6-aminonicotinamide (6-AN) was used to discriminate between the key enzymes hexokinase and phosphofrutokinase which are suggested to be involved in the effect of anesthetics on glycolysis. The cerebral energy metabolism was studied in the isolated perfused rat brain after the addition of thiopental (0.15 mM) to the perfusion medium, after the administration of 6-AN (35 mg/kg i.p.) to the intact animals 15 h before perfusion was started, as well as in brain preparations treated in the same manner with both 6-AN and thiopental. After a perfusion period of 30 min brain levels of the following substrates and metabolites were determined: phosphocreatine, ATP, ADP, AMP, glycogen, glucose, glucose 6-phosphate, fructose 6-phosphate, pyruvate, lactate, α-ketoglutarate, glutamate, ammonia, and 6-phosphogluconate.

The metabolic alterations in the isolated rat brain caused by 6-AN or thiopental were such as reported in the literature. When the isolated brains of the 6-AN pretreated rats were perfused with thiopental we found as the most interesting result that the concentration of glucose 6-phosphate was reduced in comparison to that in brains only treated with 6-AN but still significantly higher than that in controls. The glucose concentration was significantly elevated and the lactate concentration decreased considerably. The effect of thiopental on cerebral glycolysis was interpreted as an inhibition of hexokinase activity.

Key words

Thiopental Anesthesia 6-Aminonicotinamide Glycolytic pathway Isolated perfused rat brain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andjus, R. K., Suhara, K., Sloviter, H. A.: An isolated perfused rat brain preparation, its spontaneous and stimulated activity. J. appl. Physiol. 22, 1033–1039 (1967)Google Scholar
  2. Bergmeyer, H. U.: Methoden der enzymatischen Analyse. 2. Aufl. Weinheim: Verlag Chemie 1970Google Scholar
  3. Biebuyck, J. F., Hawkins, R. A.: The effect of anaesthetic agents on brain tissue metabolite patterns. Brit. J. Anaesth. 44, 226–227 (1972)Google Scholar
  4. Brand, L., Mazzia, V. B. D., Van Poznak, A., Burns, J. J., Mark, L. C.: Lack of correlation between electroencephalographic effects and plasma concentrations of thiopentone. Brit. J. Anaesth. 33, 92–96 (1961)Google Scholar
  5. Brodie, B. B., Bernstein, E., Mark, L. C.: The role of body fat in limiting the duration of action of thiopental. J. Pharmacol. exp. Ther. 105, 421–426 (1952)Google Scholar
  6. Brodie, B. B., Mark, L. C., Papper, E. M., Lief, P. A., Bernstein, E., Rovenstine, E. A.: The fate of thiopental in man and a method for its estimation in biological material. J. Pharmacol. exp. Ther. 98, 85–96 (1950)Google Scholar
  7. Brunner, E. A., Passonneau, J. V., Molstad, C.: The effect of volatile anaesthetics on levels of metabolites and on metabolic rate in brain. J. Neurochem. 18, 2301–2316 (1971)Google Scholar
  8. Coper, H., Herken, H.: Schädigung des Zentralnervensystems durch Antimetaboliten des Nikotinsäureamids. Dtsch. med. Wschr. 88, 2025–2036 (1963)Google Scholar
  9. Fink, B. R., Haschke, R. H.: Anaesthetic effects on cerebral metabolism. Anesthesiology 39, 199–215 (1973)Google Scholar
  10. Fleck, W., Krieglstein, J., Urban, W.: Zwei Apparaturen zur Perfusion des isolierten Rattenhirns. Arzneimittel-Forsch. 22, 1225–1230 (1972)Google Scholar
  11. Gatfield, P. D., Lowry, O. H., Schulz, D. W., Passonneau, J. V.: Regional energy reserves in mouse brain and changes with ischemia and anaesthesia. J. Neurochem. 13, 185–195 (1966)Google Scholar
  12. Gey, K. F., Rutishauser, M., Pletscher, A.: Suppression of glycolysis in rat brain in vivo by chlorpromazine, reserpine, and phenobarbital. Biochem. Pharmacol. 14, 507–514 (1965)Google Scholar
  13. Goldberg, N. D., Passonneau, J. V., Lowry, O. H.: Effects of changes in brain metabolism on the level of citric acid cycle intermediates. J. biol. Chem. 241, 3997–4003 (1966)Google Scholar
  14. Granholm, L., Kaasik, A. E., Nilsson, L., Siesjö, B. K.: The lactate/pyruvate ratios of cerebrospinal fluid of rats and cats related to the lactate/pyruvate, the ATP/ADP, and the phosphocreatine/creatine ratios of brain tissue. Acta physiol. scand. 74, 398–409 (1968)Google Scholar
  15. Grüner, J., Krieglstein, J., Rieger, H.: Comparison of the effects of chloral hydrate and trichloroethanol on the EEG of the isolated perfused rat brain. Naunyn-Schmiedeberg's Arch. Pharmacol. 277, 333–348 (1973)Google Scholar
  16. Guenther, W. C.: Analysis of variance. Englewood Cliffs, N. J.: Prentice-Hall 1964Google Scholar
  17. Hein, H., Krieglstein, J., Stock, R.: The effects of increased glucose supply and thiopental anesthesia on energy metabolism of the isolated perfused rat brain. Naunyn-Schmiedeberg's Arch. Pharmacol. 289, 399–407 (1975)Google Scholar
  18. Herken, H., Lange, K.: Blocking of pentose phosphate pathway in the brain of rats by 6-aminonicotinamide. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 263, 496–499 (1969)Google Scholar
  19. Herken, H., Lange, K., Kolbe, H.: Brain disorders induced by pharmacological blockade of the pentose phosphate pathway. Biochem. biophys. Res. Commun. 36, 93–100 (1969)Google Scholar
  20. Husain, S., Paradise, R. R.: Effect of halothane on CO2 production from glucose, fructose and pyruvate in rat cerebral cortical slices. J. Neurochem. 21, 1161–1166 (1973)Google Scholar
  21. Kauffman, F. C., Johnson, E. C.: Cerebral energy reserves and glycolysis in neural tissue of 6-aminonicotinamide-treated mice. J. Neurobiol. 5, 379–392 (1974)Google Scholar
  22. Keller, K., Kolbe, H., Lange, K., Herken, H.: Behaviour of the glycolytic system of the rat brain and kidney in vivo after inhibition of the glucose-phosphate isomerase. II. Substrate concentrations under the influence of ischemia, 6-aminonicotinamide, and 2-deoxyglucose. Hoppe-Seyler's Z. physiol. Chem. 353, 1389–1400 (1972)Google Scholar
  23. Kiersey, D. K., Bickford, R. G., Faulconer, A., Jr.: Electro-encephalographic patterns produced by thiopental sodium during surgical operations: discription and classification. Brit. J. Anaesth. 23, 141–152 (1951)Google Scholar
  24. Krieglstein, G., Krieglstein, J., Stock, R.: Suitability of the isolated perfused rat brain for studying effects on cerebral metabolism. Naunyn-Schmiedeberg's Arch. Pharmacol. 275, 124–134 (1972a)Google Scholar
  25. Krieglstein, G., Krieglstein, J., Urban, W.: Long survival time of an isolated perfused rat brain. J. Neurochem. 19, 885–886 (1972b)Google Scholar
  26. Krieglstein, J., Stock, R.: Comparative study of the effects of chloral hydrate and trichloroethanol on cerebral metabolism. Naunyn-Schmiedeberg's Arch. Pharmacol. 277, 323–332 (1973)Google Scholar
  27. Krieglstein, J., Stock, R.: The isolated perfused rat brain as a model for studying drugs acting on the CNS. Psychopharmacologia (Berl.) 35, 169–177 (1974)Google Scholar
  28. Krieglstein, J., Stock, R.: Energy metabolism of the isolated perfused rat brain as influenced by anesthetics. Biochem. Pharmacol. 24, 1579–1582 (1975a)Google Scholar
  29. Krieglstein, J., Stock, R.: Decreased glycolytic flux rate in the isolated perfused rat brain after pretreatment with 6-aminonicotinamide. Naunyn-Schmiedeberg's Arch. Pharmacol. 290, 323–327 (1975b)Google Scholar
  30. Lange, K., Kolbe, H., Keller, K., Herken, H.: Der Kohlenhydrat-stoffwechsel des Gehirns nach Blockade des Pentose-Phosphat-Weges durch 6-Aminonicotinsäureamid. Hoppe-Seyler's Z. physiol. Chem. 351, 1241–1252 (1970)Google Scholar
  31. Lowry, O. H., Passonneau, J. V.: The relationship between substrates and enzymes of glycolysis in brain. J. biol. Chem. 239, 31–42 (1964)Google Scholar
  32. Lowry, O. H., Passonneau, J. V., Hasselberger, F. X., Schulz, D. W.: Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J. biol. Chem. 239, 18–30 (1964)Google Scholar
  33. Mayman, C. I., Gatfield, P. D., Breckenridge, B. McL.: The glucose content of brain in anaesthesia. J. Neurochem. 11, 483–487 (1964)Google Scholar
  34. McIlwain, H., Bachelard, H. S.: Biochemistry and the central nervous system. 4th edn. Edinburgh-London: Churchill Livingstone 1971Google Scholar
  35. Nilsson, L., Siesjö, B. K.: The effect of anesthetics upon labile phosphates and upon extra- and intracellular lactate, pyruvate and bicarbonate concentrations in the rat brain. Acta physiol. scand. 80, 235–248 (1970)Google Scholar
  36. Schmahl, F. W., Betz, E., Talke, K., Hohorst, H. J.: Energiereiche Phosphate und Metabolite des Energiestoffwechsels in der Großhirnrinde der Katze. Biochem. Z. 342, 518–531 (1965)Google Scholar
  37. Strang, R. H. C., Bachelard, H. S.: Rates of cerebral glucose utilisation in rats anaesthetized with phenobarbitone. J. Neurochem. 20, 987–996 (1973)Google Scholar
  38. Takemori, A. E.: Effect of central depressant agents on cerebral glucose 6-phosphate dehydrogenase activity of rats. J. Neurochem. 12, 407–415 (1965)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • L. Bielicki
    • 1
  • J. Krieglstein
    • 1
  1. 1.Institut für Pharmakologie und Toxikologie im FB Pharmazie und Lebensmittelchemie der Philipps-Universität MarburgMarburg a. d. LahnFederal Republic of Germany

Personalised recommendations