Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 321, Issue 4, pp 239–246 | Cite as

Energy-dependent extrusion of cyclic 3′,5′-adenosine-monophosphate

A drug-sensitive regulatory mechanism for the intracellular nucleotide concentration in rat erythrocytes
  • G. Wiemer
  • U. Hellwich
  • A. Wellstein
  • J. Dietz
  • M. Hellwich
  • D. Palm


In reticulocyte-rich suspensions of red blood cells from rats extrusion of cAMP as a regulatory mechanism of intracellular cAMP was investigated.

In response to isoprenaline and/or the phosphodiesterase inhibitors Ro 20-1724 and rolipram extrusion of cAMP increases dependent on the concentration of the drugs and time of exposure. However, these drugs exert their effects on the extrusion of cAMP only indirectly, i.e. via increased intracellular levels of cAMP, since the respective EC50-values of the drugs for intracellular accumulation and extrusion of cAMP are identical (isoprenaline: ∼50 nM; rolipram: ∼1 μM; Ro 20-1724: 15 μM).

The dependence of the rate of extrusion on intracellular levels of cAMP is characterized by a typical concentration-effect relationship from which a maximal capacity of cAMP extrusion of 3–6 nmol/10 min/109 cells and a half maximal effective intracellular cAMP concentration of 40–50 nmol/109 cells can be derived. This relationship has been inferred from either kinetic or steady-state approaches. At rapidly changing intracellular levels of cAMP an apparent time lag of extracellular cAMP accumulation is obligatorily conditioned by this relationship. Vasodilating drugs which lower the ATP content of the cells as well as the uncoupler of oxidative phosphorylation, FCCP, inhibit the extrusive process (papaverine > FCCP > dipyridamole > dilazep ≫ hexobendine ≥ carbocromene) leading to a 3–5-fold increase of the intrato extracellular concentration gradient of cAMP.

It is concluded that extrusion of cAMP is a saturable and energy-dependent process which regulates the intracellular cAMP concentration independent of the activities of adenylate cyclase and phosphodiesterase.

Key words

cAMP transport Rat reticulocyte ATP Vasodilators 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barber R, Ray KP, Butcher RW (1980) Temperature effects on cyclic AMP accumulation in cultured fibroblasts. J Cycl Nucl Res 6:15–24Google Scholar
  2. Broadus AE, Hardman JG, Kaminsky NI, Ball JH, Sutherland EW, Liddle GW (1971) Extracellular cyclic nucleotides. Ann NY Acad Sci 185:50–66Google Scholar
  3. Browning ET, Groppi Jr VE, Kon C (1974) Papaverine, a potent inhibitior of respiration in C-6 astrocytoma cells. Mol Pharmacol 10:175–181Google Scholar
  4. Brunton LL, Mayer SE (1979) Extrusion of cyclic AMP from pigeon crythrocytes. J Biol Chem 254:9714–9720Google Scholar
  5. Brunton LL, Buss JE (1980) Export of cyclic AMP by mammalian reticulocytes. J Cycl Nucl Res 6:369–377Google Scholar
  6. Campbell IL, Taylor KW (1981) The effect of metabolites, papaverine, and probenecid on cyclic AMP efflux from isolated rat islets of Langerhans. Biochim Biophys Acta 677:357–364Google Scholar
  7. Chlapowski FJ (1975) The effect of hormones on cyclic adenosine 3′,5′-monophosphate accumulation in transitional epithelium of the urinary bladder. J Cycl Nucl Res 1:193–205Google Scholar
  8. Davoren PR, Sutherland EW (1963) The effect of l-epinephrine and other agents on the synthesis and release of adenosine 3′,5′-phosphate by whole pigeon erythrocytes. J Biol Chem 238:3009–3015Google Scholar
  9. Dembinska-Kiec A, Rücker W, Schönhöfer PS (1979) Effects of dipyridamole in vivo on ATP and cAMP content in platelets and arterial walls and on atherosclerotic plaque formation. Naunyn-Schmiedeberg's Arch Pharmacol 309:59–64Google Scholar
  10. Doore BJ, Bashor MM, Spitzer N, Mawe RC, Saier Jr MH (1975) Regulation of adenosine 3′,5′-monophosphate efflux from rat glioma cells in culture. J Biol Chem 250:4371–4372Google Scholar
  11. Fredholm BB, Guschin J, Elwin K, Schwab G, Uvnäs B (1976) Cyclic AMP independent inhibition by papaverine of histamine release induced by compound 48/80. Biochem Pharmacol 25:1583–1588Google Scholar
  12. Gauger D, Kaiser G, Quiring K, Palm D (1975) The β-adrenergic receptor adenyl cyclase-system of rat reticulocytes. Naunyn-Schmiedeberg's Arch Pharmacol 289:379–389Google Scholar
  13. Gerlach E, Deuticke B, Duhm J (1964) Phosphat-Permeabilität und Phosphat-Stoffwechsel menschlicher Erythrocyten und Möglichkeiten ihrer experimentellen Beeinflussung. Pflügers Arch 280:243–274Google Scholar
  14. Gorin E, Dickbuch S (1980) Release of cyclic AMP from chicken erythrocytes. Horm Metab Res 12:120–124Google Scholar
  15. Hofstee GHJ (1952) On the evaluation of the constants V m and K m in enzyme reactions. Science 116:329–331Google Scholar
  16. Imai S, Katano Y, Nakzawa M, Shimamoto N (1978) The effects of norepinephrine on the release of cyclic AMP by the isolated perfused heart of the Guinea pig. Life Sci 23:1609–1618Google Scholar
  17. Kalbhen DA, Koch HJ (1967) Methodische Untersuchungen zur quantitativen Mikrobestimmung von ATP in biologischem Material mit dem Firefly-Enzym-System. Z Klin Chem Klin Biochem 5:299–304Google Scholar
  18. Kelly LA, Butcher RW (1974) The effects of epinephrine and prostaglandin E1 on cyclic adenosine 3′,5′-monophosphate levels in WI-38 fibroblasts. J Biol Chem 249:3098–3102Google Scholar
  19. Kelly LA, Wu C-F, Butcher RW (1978) The escape of cyclic AMP from human diploid fibroblasts: General properties. J Cycl Nucl Res 4:423–435Google Scholar
  20. King CD, Mayer SE (1974) Inhibition of egress of adenosine 3′,5′-monophosphate from pigeon erythrocytes. Mol Pharmacol 10:941–953Google Scholar
  21. Klarwein M, Nitz RE (1965) Biochemisch-pharmakologische Untersuchungen des Coronardilatators 3-(β-Diäthylamino-äthyl)-4-methyl-7-carbäthoxy-methoxy-2-oxo-(1,2-chromen)-hydrochlorid. Drug Res 15:555–558Google Scholar
  22. Kukovetz WR, Pöch G (1970) Inhibition of cyclic 3′,5′-nucleotide-phosphodiesterase as a posssible mode of action of papaverine and similarly acting drugs. Naunyn-Schmiedeberg's Arch Pharmacol 267:189–194Google Scholar
  23. Kukovetz WR, Pöch G, Holzmann S, Paietta E (1975) Zum Wirkungsmechanismus von Bencyclan an der glatten Muskulatur. Drug Res 25:722–726Google Scholar
  24. Lindl T, Cramer H (1975) Evidence against dopamine as the mediator of the rise of cyclic AMP in the superior cervical ganglion of the rat. Biochem Biophys Res Comm 65:731–739Google Scholar
  25. Marone G, Lichtenstein LM, Plant M (1980) Hydrocortisone and human lymphocytes: Increases in cyclic adenosine 3′,5′-monophosphate and potentiation of adenylate cyclase-activating agents. J Pharmacol Exp Ther 215:469–478Google Scholar
  26. Palm D, Wlemer G, Dietz J (1981) Efflux of 3′,5′-cAMP from immature rat erythrocytes: Dependence on intracellular concentrations of cAMP and ATP. Naunyn-Schmiedeberg's Arch Pharmacol 317:P372Google Scholar
  27. Penit J, Jard S, Benda P (1974) Probenecide sensitive 3′,5′-cyclic AMP secretion by isoproterenol stimulated glial cells in culture. FEBS Letters 41:156–160Google Scholar
  28. Rapoport SM, Rosenthal S, Schewe T, Schultze M, Miller M (1974) The metabolism of the reticulocyte. In: Yoshikawa H, Rapoport S (eds) Cellular and molecular biology of erythrocytes. Urban & Schwarzenberg, München Berlin Wien, pp 93–141Google Scholar
  29. Rindler MJ, Bashor MM, Spitzer N, Saier JR MH (1978) Regulation of adenosine 3′,5′-monophosphate efflux from animal cells. J Biol Chem 253:5431–5436Google Scholar
  30. Rudolph SA, Greengard P, Malawista SE (1977) Effects of colchicine on cyclic AMP levels in human leukocytes. Proc Natl Acad Sci USA 74:3404–3408Google Scholar
  31. Schulze-Werninghaus G, Merget R, Kaiser G, Palm D (1979) Betaadrenerge Stimulierbarkeit bei allergischem Asthma bronchiale. Atemwegs- und Lungenkrankheiten 5:233–235Google Scholar
  32. Seamon KB, Daly JW (1981) Forskolin: A unique diterpene activator of cyclic AMP-generating systems. J Cycl Nucl Res 7:201–224Google Scholar
  33. Su Y-F, Cubeddu L, Cubeddu X, Perkins JP (1976) Regulation of adenosine 3′,5′-monophosphate content of human astrocytoma cells: Desensitization to catecholamines and prostaglandins. J Cycl Nucl Res 2:257–270Google Scholar
  34. Subbarao K, Rucinski B, Rausch MA, Schmid K, Niewiarowski S (1977) Binding of dipyridamole to human platelets and to α1 acid glykoprotein and its significance for the inhibition of adenosine uptake. J Clin Invest 60:936–943Google Scholar
  35. Takayanagi I, Karasawa A, Kasuya Y (1980) Effects of nonspecific smooth muscle relaxants on glycogen phosphorylase activity in depolarized taenia caecum of Guinea pig. J Pharm Dyn 3:65–67Google Scholar
  36. Tovey KC, Oldham KG, Whelan JAM (1974) A simple and direct assay for cyclic AMP in plasma and other biological samples using an improved competitive binding technique. Clin Chim Acta 56:221–234Google Scholar
  37. Wiemer G, Hellwich U, Palm D (1981) Extrusion of 3′,5′-cAMP from immature rat erythrocytes: Influence of phosphodiesterase inhibitors and vasodilating drugs. Adv Cyclc Nucl Res 14:671Google Scholar
  38. Wiemer G, Wellstein A, Palm D (1982a) β-Adrenoceptor sites in maturing red blood cells of the rat: Differing development of agonist and antagonist binding. Eur J Pharmacol 77:167–170Google Scholar
  39. Wiemer G, Wellstein A, Palm D, v. Hattingberg HM, Brockmeier D (1982b) Properties of agonist binding at the β-adrenoceptor of the rat reticulocyte. Naunyn-Schmiedeberg's Arch Pharmacol 321:11–19Google Scholar
  40. Zumstein P, Zapf J, Froesch ER (1974) Effects of hormones on cyclic AMP release from rat adipose tissue in vitro. FEBS Letters 49:65–69Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • G. Wiemer
    • 1
  • U. Hellwich
    • 1
  • A. Wellstein
    • 1
  • J. Dietz
    • 1
  • M. Hellwich
    • 1
  • D. Palm
    • 1
  1. 1.Zentrum der Pharmakologie, Klinikum der Johann Wolfgang Geothe-UniversitätFrankfurt/MainFederal Republic of Germany

Personalised recommendations