Skip to main content
Log in

Effects of ion channel toxins and specific neurotoxins on the cyclic nucleotide content of cerebellar slices, primary brain cultures and neural cell lines

  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Summary

cAMP and cGMP were measured in mouse cerebellar slices, neural cell lines and primary nerve cell cultures from rats after treatment with different neurotoxins and high potassium.

  1. 1.

    Sea anemone toxin II (ATX II), which is known to keep the activated sodium channels open, raised the cGMP content of mouse cerebellar slices up to 35-fold and doubled their cAMP content. Mast-cell-degranulating peptide (MCD-peptide) from been venom increased cGMP levels up to 15-fold. The effects of both toxins on the cyclic nucleotide content were mimicked by depolarizing agents, like high potassium and veratridine.

    Primary nerve cell cultures (4 weeks old) responded to ATX II and high potassium with an increase of both cGMP and cAMP, however to a smaller extent as compared with slices. Excitable structures appear to be relevant, because younger cultures (2 weeks and less) and several neural cell lines did not respond to ATX II.

  2. 2.

    Specific neurotoxins like tetanus toxin, botulinum A toxin and apamin from bee venom had no effect on the cyclic nucleotide content of cerebellar slices and of primary nerve cell cultures. In cerebellar slices the potassium-stimulated increase of cAMP and cGMP was not affected by previous exposure of the slices to tetanus toxin or apamin.

    We conclude that opening of sodium channels in excitable membranes generally raises the cyclic nucleotide content whereas the mode of action of specific neurotoxins is not reflected by changes in the overall content of cyclic nucleotides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cAMP:

3′,5′-cyclic adenosine monophosphate

cGMP:

3′,5′-cyclic guanosine monophosphate

ATXII:

sea anemone toxin II

MCD-peptide:

mast cell degranulating peptide

IBMX:

3-isobutyl 1-methyl xanthine

PDE (EC 3.1.4.17):

3′,5′-cyclic nucleotide phosphodiesterase

Hepes:

N-2′-hydroxyethyl-piperazin-2-ethane sulfonic acid

KRBG:

Krebs-Ringer-bicarbonate with glucose

References

  • Abita, J. P., Chicheportiche, R., Schweitz, H., Lazdunski, M.: Effects of neurotoxins (veratridine, sea anemone toxin, tetrodotoxin) on transmitter accumulation and release by nerve terminals in vitro. Biochemistry 16, 1838–1844 (1977)

    Google Scholar 

  • Ahnert, G.: Kanaltoxine und Neurotoxine — Beeinflussung zyklischer Nukleotide in verschiedenen neuralen in vitro-Systemen. Thesis, in preparation, Phillips Universität Marburg, Fachbereich Pharmazie und Lebensmittelchemie (1979)

  • Ahnert, G., Glossmann, H., Habermann, E.: Investigations on the mechanism of cyclic GMP increase due to depolarizing agents as studied with sea anemone toxin II in mouse cerebellar slices. Naunyn-Schmiedeberg's Arch. Pharmacol. 307, 159–166 (1979)

    Google Scholar 

  • Bigalke, H., Dimpfel, W.: Kinetics of 3H-acetylcholine synthesis and release in primary cell cultures from mammalian CNS. J. Neurochem. 30, 871–879 (1978)

    Google Scholar 

  • Bigalke, H., Dimpfel, W., Habermann, E.: Suppression of 3H-acetylcholine release from primary nerve cell cultures by tetanus and botulinum A toxin. Naunyn-Schmiedeberg's Arch. Pharmacol. 303, 133–138 (1978)

    Google Scholar 

  • Catterall, W. A.: Activation of the action potential Na+ ionophore of cultured neuroblastoma, cells by veratridine and batrachotoxin. J. Biol. Chem. 250, 4035–4059 (1975)

    Google Scholar 

  • Ferrendelli, J. A.: Cellular depolarization and cyclic nucleotide content in central nervous system. Adv. Biochem. Psychopharmacol. 15, 303–313 (1976)

    Google Scholar 

  • Ferrendelli, J. A., Kinscherf, D. A., Chang, M. M.: Regulation of levels of guanosine cyclic 3′,5′-monophosphate in the central nervous system: Effects of depolarizing agents. Mol. Pharmacol. 9, 445–454 (1973)

    Google Scholar 

  • Ferrendelli, J. A., Chang M. M., Kinscherf, D. A.: Elevation of cyclic GMP levels in central nervous system by excitatory and inhibitory amino acids. J. Neurochem. 22, 535–540 (1974)

    Google Scholar 

  • Ferrendelli, J. A., Kinscherf, D. A., Chang M.-M.: Comparison of the effects of biogenic amines on cyclic GMP and cyclic AMP levels in mouse cerebellum in vitro. Brain Res. 84, 63–73 (1975)

    Google Scholar 

  • Ferrendelli, J. A., Rubin, E. H., Kinscherf, D. A.: Influence of divalent cations on regulation of cyclic GMP and cyclic AMP levels in brain tissue. J. Neurochem. 26, 741–748 (1976)

    Google Scholar 

  • Fosset, M., De Barry J., Lenoir, M. C., Lazdunsky, M.: Analysis of molecular aspects of Na+ and Ca2+ uptakes by embryonic cardiac cells in culture. J. Biol. Chem. 252, 6112–6117 (1977)

    Google Scholar 

  • Giller, E. L., Schrier, B. K., Shainberg, A., Fish, H. R., Ransom, B. R.: Choline acetyltransferase activity is increased in combined cultures of spinal cord and muscle cells from mice. Science 182, 588–589 (1973)

    Google Scholar 

  • Goridis, C., Massarelli, R., Sensenbrenner, M., Mandel, P.: Guanyl cyclase in chick embryo brain cell cultures: Evidence of neuronal localization. J Neurochem. 23, 135–138 (1974)

    Google Scholar 

  • Habermann, E.: Neurotoxicity of apamin and MCD-peptide upon central application. Naunyn-Schmiedeberg's Arch. Pharmacol. 300, 189–191 (1977)

    Google Scholar 

  • Habermann, E.: Tetanus. In: Handbook of Clinical Neurology, Vol. 33, Infections of the nervous system, part I, pp. 491–547. (P. J. Vinken and G. W. Bruyn, eds.). Amsterdam-New York-Oxford: North-Holland Publ. Comp. 1978

    Google Scholar 

  • Habermann, E., Reiz, K. G.: Ein neues Verfahren zur Gewinnung der Komponenten von Bienengift, insbesondere des zentral wirksamen Peptids Apamin. Biochem. Z. 341, 451–466 (1965)

    Google Scholar 

  • Hamprecht, B.: Neuronenmodelle. Angew. Chem. 88, 211–223 (1976)

    Google Scholar 

  • Harper, J. F., Brooker, G.: Femtomole sensitive radioimmunoassay for cAMP and cGMP after 2-0-acetylation by acetic anhydride in aqueous solution. J. Cycl. Nucl. Res. 1, 207–218 (1975)

    Google Scholar 

  • Kebabian, J. W., Bloom, F. E., Steiner, A. L., Greengard, P.: Neurotransmitter increase cyclic nucleotides in postganglionic neurons: Immunocytochemical demonstrations. Science 190, 157–159 (1975)

    Google Scholar 

  • Kinscherf, D. A., Chang, M. M., Rubin, E. H., Schneider, D. R., Ferrendelli, J. A.: Comparison of the effects of depolarizing agents and neurotransmitters on regional CNS cyclic GMP levels in various animals. J. Neurochem. 26, 527–530 (1976)

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the folin-phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    Google Scholar 

  • Mao, C. C., Guidotti, A.: Simultaneous isolation of adenosine 3′5′ cyclic monophosphate in small tissue samples. Anal. Biochem. 59, 63–68 (1974)

    Google Scholar 

  • Miller, R. J., Kelly, P. H.: Dopamine-like effects of cholera toxin in the central nervous system. Nature 255, 163 (1975)

    Google Scholar 

  • Narahashi, T.: Chemicals as tools in the study of excitable membranes. Physiol. Rev. 54, 813–889 (1974)

    Google Scholar 

  • Nordberg, A., Sundwall, A.: Biosynthesis of acetylcholine in different brain regions in vivo following alternative, methods of sacrifice by microwawe irradiation. Acta Physiol. Scand. 89, 307–317 (1976)

    Google Scholar 

  • Romey, G., Abita, J. P., Schweitz, H., Wunderer, G., Lazdunski, M.: Sea anemone toxin: A tool to study molecular mechanism of nerve conduction and excitation-secretion coupling. Proc. Natl. Acad. Sci. U.S.A. 73, 4055–4059 (1976)

    Google Scholar 

  • Rubin, E. H., Ferrendelli, J. A.: Distribution and regulation of cyclic nucleotide levels in cerebellum in vivo. J. Neurochem. 29, 43–51 (1977)

    Google Scholar 

  • Sharp, G. W. G., Hynie, S.: Stimulation of intestinal adenyl cyclase by cholera toxin. Nature 229, 266 (1971)

    Google Scholar 

  • Shimizu, H., Ichishita, H., Odagiri, H.: Stimulated formation of cyclic adenosine 3′,5′-monophosphate by aspartate and glutamate in cerebral cortical slices of guinea pig. J. Biol. Chem. 249, 5955–5962 (1974)

    Google Scholar 

  • Simpson, L. L.: Presynaptic actions of botulinum toxin and β-bungarotoxin. In: Receptors and recognition, Series B, Vol. 1: The specificity and action of animal, bacterial and plant toxins. (P. Cuatrecasas, ed.), pp. 271–295. New York: London Chapman and Hall, A Halsted Press Book John Wiley & Sons, Inc. 1977

    Google Scholar 

  • Struck, C. J., Ahnert, G., Glossmann, H., Schaeg, W.: Solid phase radioimmunoassay for cyclic AMP using staphylococcal protein A-antibody adsorbent. Naunyn-Schmiedeberg's Arch. Pharmacol. 298, 67–73 (1977)

    Google Scholar 

  • Wonnacott, S., Marchbanks, R. M.: Inhibition by botulinum A toxin of depolarization evoked release of 14C-acetyl choline from synaptosomes in vitro. Biochem. J. 156, 701–712 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahnert, G., Glossmann, H. & Habermann, E. Effects of ion channel toxins and specific neurotoxins on the cyclic nucleotide content of cerebellar slices, primary brain cultures and neural cell lines. Naunyn-Schmiedeberg's Arch. Pharmacol. 307, 151–157 (1979). https://doi.org/10.1007/BF00498457

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00498457

Key words

Navigation