Advertisement

Subsensitivity of striatal and mesolimbic dopamine target cells after repeated treatment with apomorphine dipivaloyl ester

  • B. Scatton
  • P. Worms
Article

Summary

The effects of acute and repeated treatments with the dipivaloyl ester of apomorphine on behaviour and brain dopamine metabolism were compared in rats. A single injection of the ester (50 mg/kg i.p.) induced a stereotyped behaviour lasting for at least 6h and a concomitant decrease in striatal HVA levels. After repeated treatment (twice daily for 7 days) with the drug, both the stereotyped behaviour and the decreases in striatal HVA levels were attenuated as compared to acute treatment; the minimal dose tested which induced this tolerance was found to be 25 mg/kg i.p. The minimal length of treatment with 50 mg/kg of the ester after which tolerance was observed was 3–4 days. The ED50 for haloperidol-induced catalepsy was about 4 times lower in rats treated with apomorphine dipivaloyl ester (50 mg/kg) for 7 days than in naive rats. Similarly, a shift to the left of the haloperidol doseresponse curve for the increase in striatal dopamine metabolite levels was observed in rats treated subacutely with the ester as compared to control rats.

Repeated treatment (7 days) with the dipivaloyl ester of apomorphine also attenuated the decrease in NVA levels seen with acute treatment in nucleus accumbens and tuberculum olfactorium; however, the threshold dose inducing tolerance in limbic regions was higher than in striatum.

No difference in the brain concentrations of apomorphine was found after acute and repeated treatments with the ester.

Thus, the present study provides evidence for the development of subsensitivity of dopamine receptors after repeated administration of apomorphine dipivaloyl ester.

Key words

Apomorphine dipivaloyl ester Stereotyped behaviour Brain dopamine metabolism Subsensitivity Haloperidol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aghajanian, G. K., Bunney, B. S.: Central dopaminergic neurons: neurophysiological identification and responses to drugs. In: Frontiers in Catecholamine Research (E. Usdin, S. Snyder, eds.), pp. 643–648. New York: Pergamon Press 1973Google Scholar
  2. Andén, N. E., Rubenson, A., Fuxe, K., Hökfelt, T.: Evidence for dopamine receptor stimulation by apomorphine. J. Pharm. Pharmacol. 19, 627–629 (1967)Google Scholar
  3. Baldessarini, R. J., Walton, K. G., Borgman, R. J.: Prolonged apomorphine-like behavioural effects of apomorphine esters. Neuropharmacology 15, 471–478 (1976)Google Scholar
  4. Baldessarini, R. J., Kula, N. S., Walton, K. G., Borgman, R. J.: Hydrolysis of diester prodrugs of apomorphine. Biochem. Pharmacol. 26, 1749–1756 (1977)Google Scholar
  5. Buus-Lassen, J.: Evidence for noradrenaline (NA)- and dopamine (DA)-receptor blockade by clozapine. J. Pharmacol. (Paris) 5, Suppl. 2, 14 (1974)Google Scholar
  6. Carlsson, A.: Receptor-mediated control of dopamine metabolism. In: Pre- and postsynaptic receptors. Modern Pharmacologytoxicology, vol. 3 (E. Usdin, W. E. Bunney, Jr., eds.), pp. 49–65. New York: Marcel Dekker, Inc. 1975Google Scholar
  7. Chiel, H., Yehuda, S., Wurtman, R. J.: Development of tolerance in rats to the hypothermic effects of D-amphetamine and apomorphine. Life Sci. 14, 483–488 (1974)Google Scholar
  8. Costentin, J., Protais, P., Schwartz, J. C.: Rapid and dissociated changes in sensitivities of different dopamine receptors in mouse brain. Nature 257, 405–407 (1975)Google Scholar
  9. Di Chiara, G., Porceddu, M. L., Fratta, W., Gessa, G. L.: Postsynaptic receptors are not essential for dopaminergic feedback regulation. Nature 267, 270–272 (1977)Google Scholar
  10. Dominic, J. A., Moore, K. E.: Supersensitivity to the central stimulant actions of adrenergic drugs following discontinuation of a chronic diet of α-methyl tyrosine. Psychopharmacologia (Berl.) 15, 96–101 (1969)Google Scholar
  11. Ernst, A. M.: Mode of action of apomorphine and dexamphetamine on gnawing compulsion in rats. Psychopharmacologia (Berl.) 10, 316–323 (1967)Google Scholar
  12. Friedman, E., Rotrosen, J., Gurland, M., Lambert, G. A., Gershon, S.: Enhancement of reserpine-elicited dopaminergic supersensitivity by repeated treatment with apomorphine and α-methyl-p-tyrosine. Life Sci. 17, 867–874 (1975)Google Scholar
  13. Goldstein, M., Lew, J. Y., Nakamura, S., Battista, A. F., Lieberman, A., Fuxe, K.: Dopaminephilic properties of ergot alkaloids. In: Symposium on Ergot Alkaloids. Columbus. Ohio, 8/1977. Fed. Proc., 1978 (in press)Google Scholar
  14. Janssen, P. A. J., Niemegeers, C. J. C., Jageneau, A. H. M.: Apomorphine-antagonism in rats. Arzneim-Forsch. 10, 1003–1005 (1960)Google Scholar
  15. Kehr, W., Carlsson, A., Lindquist, M., Magnusson, T., Atack, C.: Evidence for a receptor-mediated feed back control of striatal tyrosine hydroxylase activity. J. Pharm. Pharmacol. 24, 744–747 (1972)Google Scholar
  16. Martres, M. P., Costentin, J., Baudry, M., Marcais, H., Protais, P., Schwartz, J. C.: Long-term changes in the sensitivity of pre-and postsynaptic dopamine receptors in mouse striatum evidenced by behavioural and biochemical studies. Brain Res. 136, 319–337 (1977)Google Scholar
  17. Möller Nielsen, I., Fjalland, B., Pedersen, V., Nymark, M.: Pharmacology of neuroleptics upon repeated administration. Psychopharmacologia (Berl.) 34, 95–104 (1974)Google Scholar
  18. Roos, B. E.: Decrease in homovanillic acid as evidence for dopamine receptor stimulation by apomorphine in the neostriatum of the rat. J. Pharm. Pharmacol. 21, 263–264 (1969)Google Scholar
  19. Sahakian, B. J., Robbins, T. W., Iversen, S. D.: α-Flupentixol-induced hyperactivity by chronic dosing in rats. Eur. J. Pharmacol. 37, 169–178 (1976)Google Scholar
  20. Scatton, B.: Differential regional development of tolerance to increase in dopamine turnover upon repeated neuroleptic administration. Eur. J. Pharmacol. 46, 363–369 (1977)Google Scholar
  21. Scatton, B., Garret, C., Julou, L.: Acute and subacute effects of neuroleptics on dopamine synthesis and release in rat striatum. Naunyn-Schmiedeberg's Arch. Pharmacol. 289, 419–434 (1975)Google Scholar
  22. Scatton, B., Glowinski, J., Julou, L.: Dopamine metabolism in the mesolimbic and mesocortical dopaminergic systems after single or repeated administrations of neuroleptics. Brain Res. 109, 184–189 (1976)Google Scholar
  23. Scatton, B., Boireau, A., Garret, C., Glowinski, J., Julou, L.: Action of the palmitic ester of pipotiazine on dopamine metabolism in the nigro-striatal, meso-limbic and meso-cortical systems. Naunyn-Schmiedeberg's Arch. Pharmacol. 296, 169–175 (1977)Google Scholar
  24. Sokal, R. R., Rohlf, F. J.: Biometry. In: The principles and practice of statistics in biological research. (W. H. Freeman, ed.), pp. 387–395. San Francisco: 1969Google Scholar
  25. Strömbom, U.: Catecholamine receptor agonists. Effects on motor activity and rate of tyrosine hydroxylation in mouse brain. Naunyn-Schmiedeberg's Arch. Pharmacol. 292, 167–176 (1976)Google Scholar
  26. Tarsy, T., Baldessarini, R. J.: Behavioural supersensivity to apomorphine following chronic treatment with drugs which interfere with the synaptic function of catecholamines. Neuropharmacology 13, 927–940 (1974)Google Scholar
  27. Tedeschi, D. H., Tedeschi, R. E., Cook, L., Mattis, P. A., Fellows, E. J.: The neuropharmacology of trifluoperazine: a potent psychotherapeutic agent. Arch. Int. Pharmacodyn. 122, 129–143 (1959)Google Scholar
  28. Ungerstedt, U., Butcher, L. L., Butcher, S. G. Andén, N. E., Fuxe, K.: Direct chemical stimulation of dopaminergic mechanisms in the neostriatum of the rat. Brain Res. 14, 461–471 (1969)Google Scholar
  29. Ungerstedt, U., Ljungberg, T., Hoffer, B., Siggins, G.: Dopaminergic supersensitivity in the striatum. In: Dopaminergic mechanisms. Advances in Neurology, vol. 9 (D. Calne, T. N. Chase, A. Barbeau, eds.), pp. 57–65. New York: Raven Press 1975Google Scholar
  30. Von Voigtlander, P. F., Losey, E. G., Triezenberg, H. J.: Increased sensitivity to dopaminergic agents after chronic neuroleptic treatment. J. Pharmacol. Exp. Ther. 193, 88–94 (1975)Google Scholar
  31. Westerink, B. H. C., Korf, J.: Regional rat brain levels of 3,4-dihydroxyphenylacetic acid and homovanillic acid: concurrent fluorometric measurement and influence of drugs. Eur. J. Pharmacol. 38, 281–291 (1976)Google Scholar
  32. Westerink, B. H. C., Korf, J.: Rapid concurrent automated fluorimetric assay of noradrenaline, dopamine, 3,4-dihydroxyphenylacetic acid, homovanillic acid and 3-methoxytyramine in milligram amounts of nervous tissue after isolation on Sephadex G10. J. Neurochem. 29, 697–706 (1977)Google Scholar
  33. Worms, P., Scatton, B.: Tolerance to stereotyped behaviour and to decrease in striatal homovanillic acid levels after repeated treatment with apomorphine dipivaloyl ester. Eur. J. Pharmacol. 45, 395–396 (1977)Google Scholar
  34. Yarbrough, G. G.: Supersensitivity of caudate neurons after repeated administration of haloperidol. Eur. J. Pharmacol. 31, 367–369 (1975)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • B. Scatton
    • 1
  • P. Worms
    • 2
  1. 1.Department of Biology, Neurochemistry UnitSynthélabo-L.E.R.S.BagneuxFrance
  2. 2.Neuropharmacology UnitBagneuxFrance

Personalised recommendations