Bovine adrenal cortex adenylate cyclase: Properties of the particulate enzyme and effects of guanyl nucleotides

  • Hartmut Glossmann
  • Holger Gips


The preparation of a partially purified plasma membrane fraction from bovine adrenal cortex is described. Adenylate cyclase in this particulate preparation retained high sensitivity to ACTH and is also stimulated by 5′-guanylyl-imidodiphosphate [Gpp(NH)p]. GTP, in contrast to Gpp(NH)p, had very little intrinsic activity to stimulate adenylate cyclase. GTP could however, with high affinity, inhibit the Gpp(NH)p effects on adenylate cyclase. When the concentration of creatine phosphate, a component of the ATP-regenerating system in the adenylate cyclase assay mixture, was lowered from 20 to 2 mM (at 0.1 mM ATP, 5 mM Mg2+) GTP, dGTP and other nucleotides like ITP and much less UTP or CTP gained considerable intrinsic activity in the presence of ACTH to stimulate adenylate cyclase. The apparent affinities of the nucleotides for ACTH-stimulated adenylate cyclase from bovine adrenal cortex (at 2 mM creatine phosphate) were, GTP=dGTP>Gpp(NH)p>Gpp(CH2)p (5′-guanylyl-β, γ-methylene-diphosphonate) >ITP>UTP>CTP. These findings indicate that regulatory nucleotide binding sites exist for bovine adrenal cortex adenylate cyclase. Their specificity is similar to the nucleotide sites modulating angiotensin binding in bovine adrenal cortex plasma membranes (Glossmann et al., 1974a). The regulatory nucleotide binding sites for the adrenal cortex adenylate cyclase complex can also be identified under conditions where only Gpp(NH)p has high intrinsic activity (e.g. at 20 mM creatine phosphate) but other nucleotides like GTP act as antagonists. Both stimulants, ACTH and Gpp(NH)p, appear to remain firmly bound to the particulate membrane preparation, as suggested by preincubation experiments.

Key words

ACTH Adenylate Cyclase Guanyl Nucleotide Sites 5′-Guanylyl-Imidodiphosphate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ariens, E. J., von Rossum, J. M., Simonis, A. M.: A theoretical basis of molecular pharmacology Part I: Interactions of one or two compounds with one receptor system. Arzneimittel-Forsch. 6, 282–293 (1956)Google Scholar
  2. Birnbaumer, L., Pohl, S. L., Rodbell, M.: Adenyl cyclase in fat cells. I. Properties and effects of adrenocorticotrophin and fluoride. J. biol. Chem. 244, 3468–3476 (1969)Google Scholar
  3. Birnbaumer, L., Pohl, S. L., Rodbell, M., Sundby, F.: The glucagon-sensitive adenylate cyclase system in plasma membranes of rat liver. VII. Hormonal stimulation: reversibility and dependence on concentration of free hormone. J. biol. Chem. 247, 2038–2043 (1972)Google Scholar
  4. Birnbaumer, L., Pohl, S. L., Kaumann, A. J.: Receptors and acceptors: a necessary distinction in hormone binding studies. In: P. Greengard, G. A. Robison: Advances in cyclic nucleotide research, Vol. 4, pp. 239–281. New York: Raven Press 1974Google Scholar
  5. Bockaert, J., Roy, C., Jard, S.: Oxytocin-sensitive adenylate cyclase in frog bladder epithelial cells. Role of calcium, nucleotides and other factors in hormonal stimulation. J. biol. Chem. 247, 7073–7081 (1972)Google Scholar
  6. Boeckart, J., Roy, C., Rajerison, R., Jard, S.: Specific binding of (3H) lysine vasopressin to pig kidney plasma membranes. Relationship of receptor occupancy to adenylate cyclase activation. J. biol. Chem. 248, 5922–5931 (1973)Google Scholar
  7. De Haen, C.: Adenylate cyclase, a new kinetic analysis of the effects of hormones and fluoride ion. J. biol. Chem. 249, 2756–2762 (1974)Google Scholar
  8. Finn, F. M., Widnell, C. C., Hofmann, K.: Localization of an adrenocorticotropic hormone receptor on bovine adrenal cortical membranes. J. biol. Chem. 247 5695–5702 (1972)Google Scholar
  9. Glossmann, H., Baukal, A., Catt, K. J.: Angiotensin II receptors in bovine adrenal cortex: Modification of angiotensin II binding by guanyl nucleotides. J. biol. Chem. 249, 664–666 (1974a)Google Scholar
  10. Glossmann, H., Baukal, A. J., Catt, K. J.: Properties of angiotensin II receptors in the bovine and rat adrenal cortex. J. biol. Chem. 249, 824–834 (1974b)Google Scholar
  11. Glossmann, H., Gips, H.: The preparation of brush border membranes from rat kidney using an aqueous two-phase polymer system. Naunyn-Schmiedeberg's Arch. Pharmacol. 282, 439–444 (1974a)Google Scholar
  12. Glossmann, H., Gips, H.: Adrenal cortex adenylate cyclase: Comparison between the action of GTP and 5′-guanylyl-imidodiphosphate on the particulate enzyme from bovine adrenal cortex and rat adrenals. Naunyn-Schmiedeberg's Arch. Pharmacol. 286, 239–249 (1974b)Google Scholar
  13. Grahame-Smith, D. G., Butcher, R. W., Ney, R. L., Sutherland, E. W.: Adenosine 3′,5′-monophosphate as the intracellular mediator of the action of adrenocorticotropic hormone on the adrenal cortex. J. biol. Chem. 242, 5535–5541 (1967)Google Scholar
  14. Harwood, J. P., Löw, H., Rodbell, M.: Stimulatory and inhibitory effects of guanyl nucleotides on fat cell adenylate cyclase. J. biol. Chem. 248, 6239–6245 (1973)Google Scholar
  15. Haynes, R. C., Jr.: The activation of adrenal phosphorylase by the adrenocorticotropic hormone. J. biol. Chem. 233, 1220–1227 (1958)Google Scholar
  16. Hechter, O., Bär, H.-P., Matsuba, M., Soiter, D.: ACTH sensitive adenyl cyclase in bovine adrenal cortex membrane fractions. Life Sci. 8, 935–942 (1969)Google Scholar
  17. Kelly, L. A., Koritz, S. B.: Bovine adrenal cortical adenyl cyclase and its stimulation by adrenocorticotropic hormone and NaF. Biochim. biophys. Acta (Amst.) 237, 141–155 (1971)Google Scholar
  18. Kelly, T. L., Nielson, E. D., Johnson, R. B., Vestling, C. S.: Glucose-6-phosphate dehydrogenase of adrenal tissue. J. biol. Chem. 212, 545–555 (1955)Google Scholar
  19. Lefkowitz, R. J.: Stimulation of catecholamine-sensitive adenylate cyclase by 5′-guanylyl-imidodiphosphate. J. biol. Chem. 249, 6119–6124 (1974)Google Scholar
  20. Lefkowitz, R. J., Roth, J., Pricer, W., Pastan, I.: ACTH receptors in the adrenal: specific binding of ACTH-125I and its relation to adenyl cyclase. Proc. nat. Acad. Sci. (Wash.) 65, 745–752 (1970)Google Scholar
  21. Londos, C., Salomon, Y., Lin, M. C., Harwood, J. P., Schramm, M., Wolff, J., Rodbell, M.: 5′-guanylylimidophosphate, a potent activator of adenylate cyclase system in eukaryotic cells. Proc. nat. Acad. Sci. (Wash.) 71, 3087–3090 (1974)Google Scholar
  22. McKeel, D. W., Jarett, L.: Preparation and characterization of a plasma membrane fraction from isolated fat cells. J. Cell. Biol. 44, 417–432 (1970)Google Scholar
  23. Peytremann, A., Nicholson, W. E., Brown, R. D., Liddle, G. W., Hardman, J. G.: Comparative effects of angiotensin and ACTH on cyclic AMP and steroidogenesis in isolated bovine adrenal cells. J. clin. Invest. 52, 835–842 (1973)Google Scholar
  24. Pochet, R., Boeynaems, J. M., Dumout, J. E.: Stimulation by thyrotropin of horse thyroid plasma membranes adenylate cyclase: Evidence of cooperativity. Biochem. biophys. Res. Commun. 58, 446–452 (1974)Google Scholar
  25. Rodbell, M., Krans, H. M. J., Pohl, S. L., Birnbaumer, L.: The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver: an obligatory role of guanyl nucleotides in glucagon action. J. biol. Chem. 246, 1877–1882 (1971)Google Scholar
  26. Rodbell, M., Lin, M. C., Salomon, Y.: Evidence for interdependent action of glucagon and nucleotides on the hepatic adenylate cyclase system. J. biol. Chem. 249, 59–65 (1974)Google Scholar
  27. Salomon, Y., Londos, C., Rodbell, M.: A highly sensitive adenylate cyclase assay. Analyt. Biochem. 58, 541–548 (1974)Google Scholar
  28. Wolff, J., Cook, H.: Activation of thyroid membrane adenylate cyclase by purine nucleotides. J. biol. Chem. 248, 350–355 (1973)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Hartmut Glossmann
    • 1
  • Holger Gips
    • 1
  1. 1.Pharmakologisches Institut der Justus Liebig-UniversitätGießenFederal Republic of Germany

Personalised recommendations