Psychopharmacology

, Volume 48, Issue 3, pp 311–318 | Cite as

Attenuation of intravenous amphetamine reinforcement by central dopamine blockade in rats

  • Robert A. Yokel
  • Roy A. Wise
Animal Studies

Abstract

Norepinephrine (NE) and dopamine (DA) receptor blockade differentially affected amphetamine self-administration. DA blockade (pimozide, 0.0625 to 0.5 mg/kg, or (+)-butaclamol, 0.0125 to 0.1 mg/kg) caused periods of increased rate of responding for amphetamine which were followed, in the case of higher doses, by response cessation. The response cessation produced by 0.5 mg/kg pimozide was not reversed by non-contingent amphetamine injections until well after the peak effect of the pimozide was over. When access to amphetamine injections was delayed until 4 h after animals received 0.5 mg/kg pimozide, rate of responding was elevated. Thus DA seems to be critically involved in mediation of the reinforcing effects of amphetamine. Alpha-NE blockade with phentolamine (2.5–10 mg/kg) produced dose-related decreases in responding; blockade with phenoxybenzamine (1.25–10 mg/kg) had no effect. Beta-NE blockade with l-propranolol (2.5–10 mg/kg) decreased responding, although probably not through a beta-blocking action. The effects of phentolamine and propranolol do not appear to result from attenuation of the reinforcing effects of amphetamine.

Key words

Pimozide Butaclamol Amphetamine Self-administration Reinforcement Dopamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andén, N.-E., Butcher, S. G., Corrodi, H., Fuxe, K., Ungerstedt, U.: Receptor activity and turnover of dopamine and noradrenaline after neuroleptics. Europ. J. Pharmacol. 11, 303–314 (1970)Google Scholar
  2. Andén, N.-E., Strömbom, U.: Adrenergic receptor blocking agents: Effects on central noradrenaline and dopamine receptors and on motor activity. Psychopharmacologia (Berl.) 38, 91–103 (1974)Google Scholar
  3. Baxter, B. L., Gluckman, M. I., Stein, L., Scerni, R. A.: Self-injection of apomorphine in the rat: Positive reinforcement by a dopamine receptor stimulant. Pharmacol. Biochem. Behav. 2, 387–391 (1974)Google Scholar
  4. Blumberg, J. B., Taylor, R. E., Sulser, F.: Blockade by pimozide of a noradrenaline sensitive adenylate cyclase in the limbic forebrain: Possible role of limbic noradrenergic mechanisms in the mode of action of antipsychotics. J. Pharm. Pharmacol. 27, 125–128 (1975)Google Scholar
  5. Carlsson, A.: Amphetamine and brain catecholamines. In: International Symposium on Amphetamine and Related Compounds, E. Costa and S. Garattini, eds., pp. 289–300. New York: Raven Press 1970Google Scholar
  6. Cicero, T. J., Meyer, E. R., Smithloff, B. R.: Alpha adrenergic blocking agents: Antinociceptive activity and enhancement of morphine-induced analgesia. J. Pharmacol. exp. Ther. 189, 72–82 (1974)Google Scholar
  7. Davis, W. M., Smith, S. G.: Effect of haloperidol on (+)-amphetamine self-administration. J. Pharm. Pharmacol. 27, 540–542 (1975)Google Scholar
  8. Fouriezos, G., Wise, R. A.: Pimozide-induced extinction of intracranial self-stimulation: Response patterns rule out motor or performance deficits. Brain Res. 103, 377–380 (1976)Google Scholar
  9. Goldberg, S. R., Woods, J. H., Schuster, C. R.: Nalorphine-induced changes in morphine self-administration in rhesus monkeys. J. Pharmacol. exp. Ther. 176, 464–471 (1971)Google Scholar
  10. Gunne, L. M., Änggård, E., Jönsson, L. E.: Clinical trials with amphetamine-blocking drugs. Psychiat. Neurol. Neurochir. (Amst.) 75, 225–226 (1972)Google Scholar
  11. Hastings, L., Stutz, R. M.: The effect of alpha- and beta-adrenergic antagonists on the self-stimulation phenomenon. Life Sci. 13, 1253–1259 (1973)Google Scholar
  12. Howe, R., Shanks, R. G.: Optical isomers of propranolol. Nature (Lond.) 210, 1336–1338 (1966)Google Scholar
  13. Humber, L. G., Bruderlein, F. T., Voith, K.: Neuroleptic agents of the benzocycloheptapyridoisoquinoline series. A hypothesis on their mode of interaction with the central dopamine receptor. Molec. Pharmacol. 11, 833–840 (1975)Google Scholar
  14. Janssen, P. A. J., Niemegeers, C. J. E., Schellekens, K. H. L., Dresse, A., Lenaerts, F. M., Pinchard, A., Schaper, W. K. A., Van Nueten, J. M., Verbruggen, F. J.: Pimozide, a chemically novel, highly potent and orally long-acting neuroleptic drug. I. The comparative pharmacology of pimozide, haloperidol, and chlorpromazine. Arzneimittel-Forsch. 18, 261–279 (1968)Google Scholar
  15. Kimble, G. A.: Hilgard and Marquis' Conditioning and Learning, pp. 311–315. New York: Appleton, Century, Crofts 1961Google Scholar
  16. Laverty, R., Taylor, K. M.: Propranolol uptake into the central nervous system and the effect on rat behaviour and amine metabolism. J. Pharm. Pharmacol. 20, 605–609 (1968)Google Scholar
  17. Lippmann, W., Pugsley, T., Merker, J.: Effect of butaclamol and its enantiomers upon striatal homovanillic acid and adenyl cyclase of olfactory tubercle in rats. Life Sci. 16, 213–224 (1975)Google Scholar
  18. Masuoka, D., Appelgren, L.-E., Hansson, E.: Autoradiographic distribution studies of adrenergic blocking agents. I. 14C-phenoxybenzamine (Bensylyt NFN), an α-receptor-type blocking agent. Acta pharmacol. (Kbh.) 25, 113–122 (1967)Google Scholar
  19. Masuoka, D., Hansson, E.: Autoradiographic distribution studies of adrenergic blocking agents. II. 14C-propranolol, a β receptor-type blocker. Acta pharmacol. (Kbh.) 25, 447–455 (1967)Google Scholar
  20. Miller, R. J., Horn, A. S., Iversen, L. L.: The action of neuroleptic drugs on dopamine-stimulated adenosine cyclic 3′,5′-monophosphate production in the rat neostriatum and limbic forebrain. Molec. Pharmacol. 10, 759–766 (1974)Google Scholar
  21. Miller, R. J., Horn, A. S., Iversen, L. L.: Effect of butaclamol on dopamine sensitive adenylate cyclase in the rat striatum. J. Pharm. Pharmacol. 27, 212–213 (1975)Google Scholar
  22. Pickens, R., Harris, W. C.: Self-administration of d-amphetamine by rats. Psychopharmacologia (Berl.) 12, 158–163 (1968)Google Scholar
  23. Pickens, R., Meisch, R. A., Dougherty, J. A.: Chemical interactions in methamphetamine reinforcement. Psychol. Rep. 23, 1267–1270 (1968)Google Scholar
  24. Pickens, R., Thompson, T.: Cocaine-reinforced behavior in rats: Effects of reinforcement magnitude and fixed-ratio size. J. Pharmacol. exp. Ther. 161, 122–129 (1968)Google Scholar
  25. Pincus, J. H., Tucker, G. J.: Behavioral Neurology, pp. 134–135. New York: Oxford University Press 1974Google Scholar
  26. Randrup, A., Munkvad, I.: Stereotyped activities produced by amphetamine in several animal species and man. Psychopharmacologia (Berl.) 11, 300–310 (1967)Google Scholar
  27. Risner, M. E.: The possible lack of noradrenergic mechanisms in d-amphetamine (A) self-administration. Fed. Proc. 34, no. 3, p. 768, Abstract no. 3106 (1975)Google Scholar
  28. Ryder, J., Schuster, C. R., Seiden, L. S.: The effects of alpha-methyl tyrosine on methamphetamine self-administration and brain catecholamine levels. Paper presented Winter Conference on Brain Research, Steamboat Springs, Colorado, Jan. 1975Google Scholar
  29. Shoeman, D. W., Sirtori, C. R., Azarnoff, D. L.: Inhibition of amphetamine tolerance and metabolism by proranolol. J. Pharmacol. exp. Ther. 191, 68–71 (1974)Google Scholar
  30. Soudijn, W., van Wijngaarden, I.: Localization of [3H]pimozide in the rat brain in relation to its anti-amphetamine potency. J. Pharm. Pharmacol. 24, 773–780 (1972)Google Scholar
  31. Vaughan Williams, E. M.: Mode of action of beta receptor antagonists on cardiac muscle. Amer. J. Cardiol. 18, 399–405 (1966)Google Scholar
  32. Voith, K., Herr, F.: The behavioral pharmacology of butaclamol hydrochloride (AY-23,028), a new potent neuroleptic drug. Psychopharmacologia (Berl.) 42, 11–20 (1975)Google Scholar
  33. Wilson, M. C., Schuster, C. R.: The effects of chlorpromazine on psychomotor stimulant self-administration in the rhesus monkey. Psychopharmacologia (Berl.) 26, 115–126 (1972)Google Scholar
  34. Wilson, M. C., Schuster, C. R.: Aminergic influences on intravenous cocaine self-administration by rhesus monkeys. Pharmacol. Biochem. Behav. 2, 563–571 (1974)Google Scholar
  35. Yokel, R. A., Pickens, R.: Self-administration of optical isomers of amphetamine and methylamphetamine by rats. J. Pharmacol. exp. Ther. 187, 27–33 (1973)Google Scholar
  36. Yokel, R. A., Pickens, R.: Drug level of d- and l-amphetamine during intravenous self-administration. Psychopharmacologia (Berl.) 34, 255–264 (1974)Google Scholar
  37. Yokel, R. A., Wise, R. A.: Increased lever pressing for amphetamine after pimozide in rats: Implications for a dopamine theory of reward. Science 187, 547–549 (1975)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Robert A. Yokel
    • 1
  • Roy A. Wise
    • 1
  1. 1.Center for Research on Drug Dependence, Department of PsychologyConcordia UniversityMontrealCanada

Personalised recommendations