, Volume 48, Issue 3, pp 261–270 | Cite as

Interaction between cholinergic and catecholaminergic agents in a spontaneous alternation task

  • Larry Kokkinidis
  • Hymie Anisman
Animal Studies


Spontaneous alternation was examined in a free running Y-maze task after various pharmacological manipulations. Whereas scopolamine reduced alternation to chance levels, d-amphetamine in some doses resulted in alternation significantly below chance (perseveration). Physostigmine treatment increased levels of alternation whereas reserpine was without effect. Concurrent administration of drugs revealed that reserpine effectively reversed the effects of scopolamine, while the perseveration induced by d-amphetamine was antagonized by physostigmine. When animals were pre-exposed to the Y-maze the effects of d-amphetamine were enhanced, but effects of scopolamine were not modified. Finally, scopolamine treatment augmented the perseverative effects of d-amphetamine. It was suggested that cholinergic agents modify alternation by effects on habituation. On the other hand d-amphetamine produces genuine perseveration without effects on habituation per se. Alternation performance and perseveration were suggested to be mediated by the interaction between the distinct behavioral effects of cholinergic and catecholaminergic activity.

Key words

Spontaneous alternation Perseveration Scopolamine Physostigmine d-Amphetamine Reserpine Drug interactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adkins, J., Packwood, J. W., Marshall, G. L., Jr.: Spontaneous alternation and d-amphetamine. Psychon. Sci. 17, 167–168 (1969)Google Scholar
  2. Anisman, H.: Time dependent variations in aversively motivated behaviors: Nonassociative effects of cholinergic and catecholaminergic activity. Psychol. Rev. 82, 359–385 (1975a)Google Scholar
  3. Anisman, H.: Dissociation of the disinhibitory effects of scopolamine: effects on activity and habituation. Pharmacol. Biochem. Behav. 3, 613–618 (1975b)Google Scholar
  4. Anisman, H., Cygan, D.: Central effects of scopolamine and d-amphetamine on locomotor activity: Interaction with strain and stress variables. Neuropharmacology 14, 835–840 (1975)Google Scholar
  5. Anisman, H., Kokkinidis, L.: Effects of scopolamine, d0amphetamine and other drugs affecting catecholamines on spontaneous alternation and locomotor activity in mice. Psychopharmacologia (Berl.) 45, 55–63 (1975)Google Scholar
  6. Arnfred, T., Randrup, A.: Cholinergic mechanism in brain inhibiting amphetamine-induced stereotyped behaviour. Acta pharmacol. (Kbh.) 26, 384–394 (1968)Google Scholar
  7. Bainbridge, J. G.: The inhibitory effect of amphetamine on exploration in mice. Psychopharmacologia (Berl.) 18, 314–319 (1970)Google Scholar
  8. Bartholini, G., Stadler, H., Lloyd, K. G.: Cholinergic-dopaminergic relation in different brain structures. In: Frontiers in catecholamine research. E. Usdin and S. H. Snyder, eds. New York: Pergamon Press 1973Google Scholar
  9. Bignami, G.: Nonassociative explanations of behavioral changes induced by central cholinergic drugs. Acta neurobiol. exp. (in press 1976)Google Scholar
  10. Carlton, P. L.: Augmentation of the behavioral effects of amphetamine by scopolamine. Psychopharmacologia (Berl.) 2, 377–380 (1961)Google Scholar
  11. Carlton, P. L.: Cholinergic mechanisms in the control of behavior by the brain. Psychol. Rev. 70, 19–39 (1963)Google Scholar
  12. Carlton, P. L.: Brain-acetylcholine and inhibition. In: Reinforcement and behavior. J. T. Tapp, ed., pp. 286–327. New York: Academic Press 1969Google Scholar
  13. Costall, B., Naylor, R. J., Olley, J. E.: The involvement of the caudate putamen, globus pallidus and substantia nigra with neuroleptic and cholinergic modification of locomotor activity. Neuropharmacology 11, 317–330 (1972)Google Scholar
  14. Douglas, R. J., Isaacson, R. L.: Spontaneous alternation and scopolamine. Psychon. Sci. 4, 283–284 (1966)Google Scholar
  15. Drew, W. G., Miller, L. L., Baugh, E. L.: Effects of Δ 9-THC, LSD-25, and scopolamine on continuous, spontaneous alternation in the Y-maze. Psychopharmacologia (Berl.) 32, 171–182 (1973)Google Scholar
  16. Egger, G. J., Livesey, P. J., Dawson, R. G.: Ontogenetic aspects of central cholinergic involvement in spontaneous alternation behavior. Develop. Psychol. 6, 289–299 (1973)Google Scholar
  17. Gellhorn, S.: Autonomic imbalance and the hypothalamus. Minneapolis: University of Minnesota Press 1957Google Scholar
  18. Izquierdo, I.: Possible peripheral adrenergic and cholinergic mechanisms in pseudoconditioning. Psychopharmacologia (Berl.) 35, 189–193 (1974)Google Scholar
  19. Janowsky, D. S., El-Yousef, M. K., Davis, J. M., Sekerke, H. J.: Cholinergic antagonism of methylphenidate-induced stereotyped behavior. Psychopharmacologia (Berl.) 27, 295–303 (1972)Google Scholar
  20. Javoy, F., Agid, Y., Bouvet, D., Glowinski, J.: Changes in neostriatal DA metabolism after carbachol or atropine micro injections into the substantia nigra. Brain Res. 68, 253–260 (1974)Google Scholar
  21. Jerussi, T. P., Glick, S. D.: Amphetamine-induced rotation in rats without lesions. Neuropharmacology 13, 283–286 (1974)Google Scholar
  22. Jonsson, G., Einarsson, P., Fuxe, K., Hallman, H.: Microspectro-fluorometric studies on central 5-hydroxytryptamine neurons. In: Serotonin-New Vistas: Histochemistry and pharmacology, E. Costa, G. L. Gessa and M. Sandler, eds. New York: Raven Press 1974Google Scholar
  23. Leaton, R. N., Utell, M. J.: Effects of scopolamine on spontaneous alternation following free and forced trials. Physiol. Behav. 5, 331–334 (1970)Google Scholar
  24. Mennear, J. H.: Interactions between central cholinergic agents and amphetamine in mice. Psychopharmacologia (Berl.) 7, 107–114 (1965)Google Scholar
  25. Meyers, B., Domino, E. F.: The effect of cholinergic blocking drugs on spontaneous alternation in rats. Arch. int. Pharmacodyn. 150, 525–529 (1964)Google Scholar
  26. Proctor, C. D., Potts, J. L., Ashley, L. G., Denefield, B. A.: Pilocarpine reversal of d-amphetamine induced increase in mouse exploratory locomotor activity. Arch. int. Pharmacodyn. 167, 61–68 (1967)Google Scholar
  27. Randrup, A., Munkvad, I.: Dopa and other naturally occurring substances as causes of stereotypy and rage in rats. Acta psychiat. scand. 42, Suppl. 191, 193–199(b) (1966)Google Scholar
  28. Richardson, J. S.: Basic concepts of psychopharmacological research as applied to the psychopharmacological analysis of the amygdala. Acta neurobiol. exp. 34, 543–562 (1974)Google Scholar
  29. Scheel-Krüger, J.: Central effects of anticholinergic drugs measured by the apomorphine gnawing test in mice. Acta pharmacol. T. (Kbh.) 28, 1–16 (1970)Google Scholar
  30. Squire, R. L.: Effects of pretrial and posttrial administration of cholinergic and anticholinergic drugs on spontaneous alternation. J. comp. physiol. Psychol. 1, 69–75 (1969)Google Scholar
  31. Stadler, H., Lloyd, K. G., Bartholini, G.: Dopaminergic inhibition of striatal cholinergic neurons: Synergistic blocking action of gamma-butyrolactone and neuroleptic drugs. Naunyn-Schmiedeberg's Arch. Pharmacol. 283, 129–134 (1974)Google Scholar
  32. Strömberg, U.: Dopa effects on motility in mice: Potentiation by MK485 and dexchlorpheniramine. Psychopharmacologia (Berl.) 18, 58–67 (1970)Google Scholar
  33. Swonger, A. K., Rech, R. H.: Serotonergic and cholinergic involvement in habituation of activity and spontaneous alternation of rats in a Y-maze. J. comp. physiol. Psychol. 81, 509–522 (1972)Google Scholar
  34. Ungerstedt, U.: Brain dopamine neurons and behavior. In: The Neurosciences: Third study program. F. O. Schmitt and F. G. Worden, eds., pp. 695–703. Cambridge: The MIT Press 1974Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Larry Kokkinidis
    • 1
  • Hymie Anisman
    • 1
  1. 1.Department of PsychologyCarleton UniversityOttawaCanada

Personalised recommendations