, Volume 65, Issue 1, pp 1–15 | Cite as

Application of the aluminum-formaldehyde (ALFA) histofluorescence method for demonstration of peripheral stores of catecholamines and indolamines in freeze-dried paraffin-embedded tissue, cryostat sections and whole-mounts

  • V. Ajelis
  • A. Björklund
  • B. Falck
  • O. Lindvall
  • I. Lorén
  • B. Walles


This paper describes new procedures for highly sensitive visualization of monoamine stores in peripheral tissues, taking advantage of the recently introduced aluminum-catalysed formaldehyde (ALFA) reaction. The tissues are exposed to an aluminum sulphate solution (with or without formaldehyde fixation) in a perfusion and/or immersion step, followed by formaldehyde vapour treatment. Procedures are described for freeze-dried, paraffin embedded tissue, cryostat sections and whole mount preparations. For all these tissue preparations the ALFA method gives a highly sensitive and precise demonstration of catecholamine-containing neurons and 5-HT-containing cells in a variety of peripheral tissues. For freeze-dried tissue and cryostat sections the ALFA method represents an improvement in comparison with other available methods. This is particularly noticeable for the very delicate adrenergic nerves in such organs as the thyroid, ovary, pancreas and the gastrointestinal tract.


Monoamine Peripheral Tissue Cryostat Section Sulphate Solution Adrenergic Nerve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alm, P., Cegrell, L., Ehinger, B., Falck, B.: Remarkable adrenergic nerves in the exocrine pancreas. Z. Zellforsch. 83, 178–186 (1967)Google Scholar
  2. Alm, P., Liedberg, G., Owman, Ch.: Gastric and pancreatic sympathetic denervation in the rat. Scand. J. Gastroenterol. 6, 307–312 (1971)Google Scholar
  3. Battenberg, E.L.F., Bllom, F.E.: A rapid, simple and more sensitive method for the demonstration of central catecholamine-containing neurons and axons by glyoxylic acid induced fluorescence. I. Specificity. Psychopharmacol. Commun. I, 3–13 (1975)Google Scholar
  4. Björklund, A., Falck, B., Owman, Ch.: Fluorescence microscopic and microspectrofluoremetric techniques for the cellular localization and characterization of biogenic amines. In: Methods of investigative and diagnostic endocrinology. S.A. Berson (ed). Vol. I: The theyroid and biogenic amines J.E. Rall and I.J. Kopin (eds.), pp. 318–368. Amsterdam: North-Holland 1972Google Scholar
  5. Björklund, A., Falck, B., Lindvall, O., Lorén, I.: The aluminum-formaldehyde (ALFA) histofluorescence method for improved visualization of catecholamines and indolamines. II. Model experiments. J. Neurosci. Methods, in press (1980)Google Scholar
  6. Bloom, F.E., Battenberg, E.L.F.: A rapid, simple and more sensitive method for the demonstration of central catecholamine-containing neurons and axons by glyoxylic acid induced fluorescence: II: A detailed description of methodology. J. Histochem. Cytochem. 24, 561–571 (1976)Google Scholar
  7. Cegrell, L.: The occurrence of biogenic monoamines in the mammalian endocrine pancreas. Acta Physiol. Scand., Suppl. 314 (1968)Google Scholar
  8. Corrodi, H., Hillarp, N.-Å.: Fluoreszenzmethoden zur histochemischen Sichtbarmachung von Monoaminen. I. Identifizierung der fluoreszierenden Produkte aus Modellversuchen mit 6,7-Dimethoxyisochinolinderivaten und Formaldehyd. Helv. Chim. Acta 46, 2425–2430 (1963)Google Scholar
  9. Corrodi, H., Hillarp, N.-Å.: Fluoreszenzmethoden zur histochemischen Sichtbarmachung von Monoaminen. 2. Identifizierung des fluoreszierenden Produktes aus Dopamin und Formaldehyd. Helv. Chim. Acta 47, 911–918 (1964)Google Scholar
  10. Costa, M., Gabella, G.: Adrenergic innervation of the alimentary canal. Z. Zellforsch. 122, 357–377 (1971)Google Scholar
  11. Eränkö, O., Räisänen, L.: Demonstration of catecholamines in adrenergic nerve fibres by fixation in aqueous formaldehyde solution and fluorescence microscopy. J. Histochem. Cytochem. 14, 690–691 (1966)Google Scholar
  12. Falck, B.: Observations on the possibilities of the cellular localization of monoamines by a fluorescence method. Acta Physiol. Scand. 56, Suppl. 197, I (1962)Google Scholar
  13. Falck, B., Hillarp, N.-Å., Thieme, G., Torp, A.: Fluorescence of catecholamines and related compounds condensed with formaldehyde. J. Histochem. Cytochem. 10, 348–354 (1962)Google Scholar
  14. Furness, J.B., Costa, M.: The adrenergic innervation of the gastrointestinal tract. Ergeb. Physiol. 69, 1–51 (1974)Google Scholar
  15. Furness, J.B., Costa, M.: The use of glyoxylic acid for the fluorescence histochemical demonstration of peripheral stores of noradrenaline and 5-hydroxytryptamine in whole mounts. Histochemistry 41, 335–352 (1975)Google Scholar
  16. Furness, J.B., Costa, M., Wilson, A.J.: Water-stable fluorophores, produced by reaction with aldehyde solutions, for the histochemical localization of catechol- and indolethylamines. Histochemistry 52, 159–170 (1977)Google Scholar
  17. Furness, J.B., Malmfors, T.: Aspects of the arrangement of the adrenergic innervation in guinea-pigs as revealed by the fluorescence histochemical method applied to stretched, air-dried preparations. Histochemie 25, 297–309 (1971)Google Scholar
  18. Hamberger, B., Norberg, K.A.: Histochemical demonstration of catecholamines in fresh frozen sections. J. Histochem. Cytochem. 12, 48–49 (1964)Google Scholar
  19. Heene, R.: Histochemischer Nachweis von Katecholaminen und 5-Hydroxytryptamin im Kryostatschnitt. Histochemie 14, 324–327 (1968)Google Scholar
  20. Håkansson, R., Owman, Ch., Sjöberg, N.-O., Sporrong, B.: Amine mechanisms in enterochromaffin and enterochromaffin-like cells of gastric mucosa in various mammals. Histochemie 21, 189–220 (1970)Google Scholar
  21. Hökfelt, T., Ljungdahl, Å.: Modification of the Falck-Hillarp formaldehyde fluorescence method using the VibratomeR: simple, rapid and sensitive localization of catecholamines in sections of unfixed or formalin fixed brain tissue. Histochemie 29, 325–339 (1972)Google Scholar
  22. Jacobowitz, D.: Histochemical studies of the autonomic innervation of the gut. J. Pharmacol. Exp. Ther. 149, 358–365 (1965)Google Scholar
  23. Laties, A.M., Lund, R., Jacobowitz, D.: A simplified method for the histochemical localization of cardiac catecholamine-containing nerve fibres. J. Histochem. Cytochem. 15, 535–541 (1967)Google Scholar
  24. la Torre, J.C. de, Surgeon, J.W.: A methodological approach to rapid and sensitive monoamine histofluorescence using a modified glyoxylic acid technique: the SPG method. Histochemistry 49, 81–93 (1976)Google Scholar
  25. Lindvall, O., Björklund, A.: The glyoxylic acid fluorescence histochemical method: a detailed account of the methodology for the visualization of central catecholamine neurons. Histochemistry 39, 97–127 (1974)Google Scholar
  26. Lindvall, O., Björklund, A.: Organization of catecholamine neurons in the rat cerebral nervous system. In: Handbook of Psychopharmacology, vol. 9. L.I. Iversen, S.D. Iversen and S.S. Snyder (eds.), pp. 139–231. New York, London: Plenum Press 1978Google Scholar
  27. Lorén, I., Björklund, A., Falck, B., Lindvall, O.: An improved histofluorescence procedure for freeze-dried paraffin embedded tissue based on combined formaldehyde-glyoxylic acid perfusion with high magnesium content and acid pH. Histochemistry 49, 177–192 (1976)Google Scholar
  28. Lorén, I., Björklund, A., Lindvall, O.: Magnesium ions in fluorescence histochemistry. Application to the cryostat and vibratome techniques. Histochemistry 52, 223–239 (1977a)Google Scholar
  29. Lorén, I., Björklund, A., Falck, B., Lindvall, O.: The use of magnesium ions for sensitive visualization of catecholamines and serotonin in the CNS. Acta Physiol. Scand., Suppl. 452, 15–18 (1977b)Google Scholar
  30. Lorén, I., Björklund, A., Falck, B., Lindvall, O.: The aluminum-formaldehyde (ALFA) histofluorescence method for improved visualization of catecholamines and indolamines. Application on the central nervous system. J. Neurosci. Meth., in press (1980)Google Scholar
  31. Malmfors, T.: Studies on adrenergic nerves. Acta Physiol. Scand. 64, Suppl. 248, 1–93 (1965)Google Scholar
  32. McLean, J.R., Burnstock, G.: Histochemical localization of catecholamines in the urinary bladder of the toad (Bufo marinus). J. Histochem. Cytochem. 15, 538–548 (1966)Google Scholar
  33. Mellander, A., Ericson, L.E., Sundler, F., Ingbar, S.H.: Sympathetic innervation of the mouse thyroid and its significance in thyroid hormone secretion. Endocrinology 94, 959–966 (1974)Google Scholar
  34. Mellander, A., Sundler, F., Westgren, U.: Sympathetic innervation of the thyroid: variation with species and with age. Endocrinology 96, 102–106 (1975)Google Scholar
  35. Nelson, J.S., Wakefield, P.L.: The cellular localization of catecholamines in frozen-dried, cryostat sections of the brain and autonomic nervous system. J. Neuropath. Exp. Neurol. 27, 221–223 (1968)Google Scholar
  36. Nielsen, K.C., Owman, Ch.: Difference in cardiac adrenergic innervation between hibernators and non-hibernating mammals. Acta Physiol. Scand., Suppl. 316 (1967)Google Scholar
  37. Norberg, K.-A.: Transmitter histochemistry of the sympathetic adrenergic nervous system. Brain Res. 5, 125–170 (1967)Google Scholar
  38. Nygren, L.-G.: On the visualization of central dopamine and noradrenaline nerve terminals in cryostat sections. Med. Biol. 54, 278–285 (1976)Google Scholar
  39. Owman, Ch., Sjöberg, N.-O., Svensson, K.-G., Walles, B.: Autonomic nerves mediating contractility in the human Graafian follicle. J. Reprod. Fertil. 45, 553–556 (1975)Google Scholar
  40. Placidi, G.F., Masouka, D.: Histochemical demonstration of fluorescent catecholamine terminal in cryostat sections of brain tissue. J. Histochem. Cytochem. 16, 491–492 (1968)Google Scholar
  41. Sachs, Ch.: Noradrenaline uptake mechanisms in the mouse atrium. A biochemical and histochemical study. Acta Physiol. Scand., Suppl. 341, (1970)Google Scholar
  42. Springgs, T., Lever, J., Rees, P., Graham, J.: Controlled formaldehyde-catecholamine condensation in cryostat sections to show adrenergic nerves by fluorescence. Stain Technol. 41, 323–327 (1966)Google Scholar
  43. Stefenson, A., Owman, Ch., Sjöberg, N.-O., Walles, B.: Comparative study of the autonomic innervation of the mammalian ovary, with particular regard to the follicular system. Glyoxylic acid and cholinesterase histochemistry on vibratome sections. Submitted to Cell Tissue Res. (1979)Google Scholar
  44. Waris, T., Partanen, S.: Demonstration of catecholamines in peripheral adrenergic nerves in stretch preparations with fluorescence induced by aqueous solution of glyoxylic acid. Histochemistry 41, 369–372 (1975)Google Scholar
  45. Watson, J.S., Ellison, J.P.: Cryostat technique for central nervous system histofluorescence. Histochemistry 50, 119–127 (1976)Google Scholar
  46. Watson, S.J., Barchas, J.D.: Catecholamine histofluorescence using cryostat sectioning and glyoxylic acid in unperfused frozen brain: a detailed description of the technique. Histochemical J. 9, 183–195 (1977)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • V. Ajelis
    • 1
    • 2
  • A. Björklund
    • 1
    • 2
  • B. Falck
    • 1
    • 2
  • O. Lindvall
    • 1
    • 2
  • I. Lorén
    • 1
    • 2
  • B. Walles
    • 1
    • 2
  1. 1.Department of HistologyUniversity of LundLundSweden
  2. 2.Department of NeurologyUniversity of LundLundSweden

Personalised recommendations