, Volume 61, Issue 2, pp 223–232 | Cite as

A new selective ultrahistochemical method for the demonstration of calcium using N,N-naphthaloylhydroxylamine

  • A. Zechmeister


A new, simple, rapid, and highly sensitive and selective method for the ultrahistochemical detection of calcium is described. The reagent N,N-Naphthaloylhydroxylamine (1,8-C10H6CON(ONa)CO) sodium salt was employed in this study for the demonstration of calcium at the subcellular level in relaxed and contracted muscles (smooth muscle of the stomach, thoracic aorta, and myocardial muscle cells) of the rat (in vitro as well as in vivo) and in the human vascular smooth muscle of the aorta with atherosclerotic calcification.

Direct evidence of the presence of calcium in the electron-dense reaction products (calcium N,N-Naphthaloylhydroxylamine) is given by X-ray microanalysis of 1,500–2,000 Å thick sections.

The significance of distributional differences in the localization of calcium in subcellular structures of relaxed and contracted muscles in discussed in relation to the role of calcium in the control of the muscle activity during the contraction-relaxation cycle.


Sodium Calcium Smooth Muscle Muscle Cell Direct Evidence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agostini, B., Hasselbach, W.: Probleme bei der cytochemischen Darstellung der Calcium-Aufnahme der sarkoplasmatischen Retikulums. Mikroskopie 28, 185–192 (1972)Google Scholar
  2. Batra, S.: The role of mitochondrial calcium uptake in contraction and relaxation of the human myometrium. Biochim. Biophys. Acta (Amst.) 305, 428–432 (1973)Google Scholar
  3. Beck, G.: Mikrochemie 36/37, 245 (1951). (Cit. in: Voigt, 1957)Google Scholar
  4. Brighton, C. T., Hunt, R. M.: Mitochondrial calcium and its role in calcification: Histochemical localization of calcium in electron micrographs of the epiphyseal growth plate with K-pyroantimonate. Clin. Orthop. 100, 406–416 (1974)Google Scholar
  5. Carafoli, E., Lehninger, A. L.: A survey of the interaction of calcium ions with mitochondria from different tissues and species. Biochem. J. 122, 681–690 (1971)Google Scholar
  6. Carasso, N., Favard, P.: Mise en évidence du calcium dans les myonémes pédiculaires de ciliés péritriches. J. Microscopie 5, 759–770 (1966)Google Scholar
  7. Constantin, L. L., Franzini-Armstrong, C., Podolsky, R. J.: Localization of calcium-accumulating structures in striated muscle fibers. Science 147, 158–160 (1965)Google Scholar
  8. Debbas, G.: Electron-microscopic localization of calcium in vascular smooth muscle. Ph. D. thesis. Michigan 48106 (1973)Google Scholar
  9. Debbas, G., Hoffman, L., Landon, E. J., Hurwitz, L.: Electron-microscopic localization of calcium in vascular smooth muscle. Anat. Rec. 182, 447–472 (1975)Google Scholar
  10. Devine, C. E., Somlyo, A. V., Somlyo, A. P.: Sarcoplasmic reticulum and excitation-contraction coupling in mammalian smooth muscles. J. Cell Biol. 52, 690–718 (1972)Google Scholar
  11. Diculescu, I., Popescu, L. M., Ionescu, N., Butucescu, N.: Ultrastructural study of calcium distribution in cardiac muscle cells. Z. Zellforsch. 121, 181–198 (1971)Google Scholar
  12. Goodford, P. J.: The calcium content of the smooth muscle of guinea-pig taenia coli. J. Physiol. (Lond.) 192, 145–157 (1967)Google Scholar
  13. Goodford, P. J., Wolowyk, M. W.: Localization of cation interaction in the smooth muscle of the guinea-pig taenia coli. J. Physiol. (Lond.) 224, 521–535 (1972)Google Scholar
  14. Hales, C. N., Luzio, J. P., Chandler, J. A., Herman, L.: Localization of calcium in the smooth endoplasmic reticulum of rat isolated fat cells. J. Cell Sci. 15, 1–15 (1974)Google Scholar
  15. Harigaya, S., Schwarz, A.: Rate of calcium binding and uptake in normal animal and failing human muscle. Circ. Res. 25, 781–794 (1969)Google Scholar
  16. Hasselbach, W.: Relaxation and sarcotubular calcium pump. Fed. Proc. 23, 909–912 (1964)Google Scholar
  17. Haugaard, N., Haugaard, E. S., Lee, N. H., Horn, R. S.: Possible role of mitochondria in regulation of cardiac contractility. Fed. Proc. 28, 1657–1662 (1969)Google Scholar
  18. Heumann, H. G.: The subcellular localization of calcium in vertebrate smooth muscle: Calciumcontaining and calcium accumulating structures in muscle cells of mouse intestine. Cell Tissue Res. 169, 221–231 (1976)Google Scholar
  19. Hurwitz, L., Fitzpatrick, D. E., Debbas, G., Landon, E. J.: Localization of calcium pump activity in smooth muscle. Science 179, 384–386 (1973)Google Scholar
  20. Jonas, L., Zelck, U.: The subcellular calcium distribution in the smooth muscle cells of the pig coronary artery. Exp. Cell Res. 89, 352–358 (1974)Google Scholar
  21. Katz, A. M., Repke, D. I.: Quantitative aspects of dog cardiac microsomal calcium binding and calcium uptake. Circ. Res. 21, 153–162 (1967)Google Scholar
  22. Kierszenbaum, A. L., Linabati, C. M., Tandler, C. J.: The distribution of inorganic cations in mouse testis. J. Cell. Biol. 48, 314–323 (1971)Google Scholar
  23. Klein, R. L., Horton, C. R., Thureson-Klein, A.: Studies on nuclear amino acid transport and cation content in embryonic myocardium of the chick. Am. J. Cardiol. 25, 300–310 (1970)Google Scholar
  24. Klein-Thureson, A., Klein, R. L.: Cation distribution and cardiac jelly in early embryonic heart: A histochemical and electron microscopic study. J. Mol. Cell. Cardiol. 2, 31–40 (1971)Google Scholar
  25. Klein, R. L., Yen, S. S., Thureson-Klein, A.: Critique on the K-pyroantimonate method for semiquantitative estimation of cations in conjugation with electron microscopy. J. Histochem. Cytochem. 20, 65–78 (1972)Google Scholar
  26. Komnick, H.: Electronenmikroskopische Lokalisation von Na+ und Cl in Zellen und Geweben. Protoplasma 55, 414–418 (1962)Google Scholar
  27. Legato, M. J., Langer, G. A.: The subcellular localization of calcium ion in mammalian myocardium. J. Cell Biol. 41, 401–423 (1969)Google Scholar
  28. Nayler, W. G., Merrillees, N. C. R.: Cellular exchange of calcium. In Calcium and the heart, p. 24–65. (eds. Harris, P., Opie, L.). London and New York: Academic Press 1971Google Scholar
  29. Podolsky, R. J., Hall, T., Hatchett, S. L.: Identification of oxalate precipitates in striated muscle fibers. J. Cell Biol. 44, 699–702 (1970)Google Scholar
  30. Popescu, L. M.: A conceptual model of the excitation-contraction coupling in smooth muscle: the possible role of the surface microvesicles. Studia Biophys. 44, 141–153 (1974)Google Scholar
  31. Popescu, L. M., Diculescu, I., Zelck, U., Ionescu, N.: Ultrastructural distribution of calcium in smooth muscle cells of guinea-pig taenia coli. A correlated electron microscope and quantitative study. Cell Tissue Res. 154, 357–378 (1974)Google Scholar
  32. Reinhold, M., Stocken, W.: Darstellung eines ATP-sensitiven Membransystem mit Ca2+-transportierender Function bei Amöben. Cytobiologie 6, 182–194 (1972)Google Scholar
  33. Saetersdal, T. S., Justensen, N. P., Krohnstand, A. W.: Ultrastructure and inervation of the Telostean atrium. J. Mol. Cell. Cardiol. 7 (1975) (Cit. in: Saetersdal et al., 1975)Google Scholar
  34. Saetersdal, T. S., Myklebust, R., Justesen, N. P.: Ultrastructural localization of calcium in the pigeon papillary muscle as demonstrated by cytochemical studies and X-ray microanalysis. Cell Tissue Res. 155, 57–74 (1974)Google Scholar
  35. Schwartz, A.: Calcium in the sarcoplasmic reticulum. In: Calcium and the heart, (eds. P. Harris, L. Opie) pp. 66–92. London and New York: Academic Press 1971Google Scholar
  36. Somlyo, A. P., Somlyo, A. V.: Vascular smooth muscle. I. Normal structure, pathology, biochemistry and biophysics. Pharmacol. Rev. 20, 197–272 (1968)Google Scholar
  37. Somlyo, A. V., Somlyo, A. P.: Strontium accumulation by sarcoplasmic reticulum and mitochondria in vascular smooth muscle. Science 174, 955–958 (1971)Google Scholar
  38. Somlyo, A. P., Somlyo, A. V., Devine, C. E., Peters, P. D., Hall, T. A.: Electron microscopy and electron probe analysis of mitochondrial cation accumulatin in smooth muscle. J. Cell Biol. 61, 723–742 (1974)Google Scholar
  39. Sommer, J. R., Johnson, E. A.: Cardial muscle. A comparative ultrastructural study with special reference to frog and chicken hearts. Z. Zellforsch. 98, 437–468 (1969)Google Scholar
  40. Tandler, C. J., Libanati, C. M., Sanchis, C. A.: The intracellular localization of inorganic cations with potassium pyroantimonate. J. Cell Biol. 45, 355–366 (1970)Google Scholar
  41. Voigt, G. T.: Ein neuer histotopochemischer Nachweis des Calciums (mit Naphtalylhydroxamsäure). Acta Histochem. (Jena) 4, 122–131 (1957)Google Scholar
  42. Yarom, R., Meiri, U.: N-lines in striated muscle: a site of intracellular Ca2+. Nature (New Biol.) 234, 254–256 (1971)Google Scholar
  43. Yarom, R., Ben-Ishay, D., Zinder, O.: Myocardial cationic shifts induced by isoproterenol. Electronmicroscopic and electron probe studies. J. Mol. Cell. Cardiol. 4, 559–570 (1972)Google Scholar
  44. Yeh, B. K.: Localization of calcium antimonate in the atrial and ventricular muscle fibers of the cat heart. J. Mol. Cell. Cardiol. 5, 351–358 (1973)Google Scholar
  45. Yu, S. Y., Blumenthal, H. T.: The calcification of elastic fibers. I. Biochemical studies. J. Gerontol. 18, 119–126 (1963)Google Scholar
  46. Zelck, U., Jonas, L., Wiegershausen, B.: Ultrahistochemischer Nachweis von Calcium in glatten Muskelzellen der Arteria coronaria sinistra des Schweines. Acta Histochem. (Jena) 44, 180–182 (1972)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • A. Zechmeister
    • 1
  1. 1.Department of Anatomy, Faculty of MedicinePurkyně UniversityBrnoČSSR

Personalised recommendations