Effect of gallopamil on energy metabolism of the isolated perfused rat brain in the postischemic period

  • J. Weber
  • J. Krieglstein
Short Communication

Summary

The isolated perfused rat brain was used to demonstrate an effect of gallopamil on energy metabolism affected by ischemia. After a perfusion period of 30 min and 10 min of ischemia the isolated brain preparation was reperfused. From the onset of perfusion onwards, gallopamil (1 or 10 μmol/l) was present in the medium. The higher concentration of gallopamil accelerated significantly the restoration of the high-energy phosphates in the recovery stage: after 2 min of recirculation the ATP and the creatine-P levels were higher and the AMP level was lower in cortical tissue of drug-treated brains than in untreated controls. These results suggest that gallopamil protected brain energy metabolism against ischemic damage.

Key words

Gallopamil Brain energy metabolism Calcium Isolated perfused rat brain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andjus R, Suhara K, Sloviter HA (1967) An isolated, perfused rat brain preparations, its spontaneous and stimulated activity. J Appl Physiol 22:1033–1039Google Scholar
  2. Atkinson DE (1968) The energy change of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7:4030–4034Google Scholar
  3. Bergmeyer HU (1970) Methoden der enzymatischen Analyse, 2. Auflage. Verlag Chemie, WeinheimGoogle Scholar
  4. Dirks B, Krieglstein J, Lind HH, Rieger H, Schütz H (1980) Fluorocarbon perfusion medium applied to the isolated rat brain. J Pharmacol Methods 4:95–108Google Scholar
  5. Fleckenstein A, Fleckenstein B, Späh F, Byon YK (1983) Gallopamil (D 600) — ein Kalziumantagonist von hoher Wirkungsstärke und Spezifität. Effekt auf Myokard und Schrittmacher. In: Kaltenbach M, Hopf R (eds) Gallopamil. Springer, Berlin Heidelberg New York Tokyo, pp 1–34Google Scholar
  6. Folbergrova J, Pontén U, Siesjö BK (1974) Patterns of changes in brain carbohydrate metabolites, amino acids and organic phosphates at increased carbon dioxide tensions. J Neurochem 22:1115–1125Google Scholar
  7. Freedman SB, Dawson G, Villereal ML, Miller RJ (1984) Identification and characterization of voltage-sensitive calcium channels in neuronal clonal cell lines. J Neurosci 4:1453–1467Google Scholar
  8. Grosse Ophoff B, Hossmann KA, Bodsch W, Paschen W (1984) Relationship between regional calcium content and energy metabolism during recovery from prolonged cerebral ischemia. Monogr Neural Sci 11:22–27Google Scholar
  9. Hossmann KA, Paschen W, Csiba L (1983) Relationship between calcium accumulation and recovery of cat brain after prolonged cerebral ischemia. J Cereb Blood Flow Metab 3:346–353Google Scholar
  10. Kopp SJ, Krieglstein J, Freidank A, Rachman A, Seibert A, Cohen MM (1984) P-31 Nuclear magnetic resonance analysis of brain. II. Effects of oxygen deprivation on isolated perfused and nonperfused rat brain. J Neurochem 43:1716–1731Google Scholar
  11. Kovach AGB, Dóra E, Szedlacsek S, Koller A (1983) Effect of the organic calcium antagonist D-600 on cerebrocortical vascular and redox responses evoked by adenosine, anoxia, and epilepsy. J Cereb Blood Flow Metab 3:51–61Google Scholar
  12. Krieglstein J, Stock R (1974) The isolated perfused rat brain as a model for studying drug effects acting on the CNS. Psychopharmacology (Berlin) 35:169–177Google Scholar
  13. Krieglstein G, Krieglstein J, Stock R (1972a) Suitability of the isolated perfused rat brain for studying effects on cerebral metabolism. Naunyn-Schmiedeberg's Arch Pharmacol 275: 124–134Google Scholar
  14. Krieglstein G, Krieglstein J, Urban W (1972b) Long survival time of an isolated perfused rat brain. J Neurochem 19:885–886Google Scholar
  15. Lowry OH, Passonneau JV (1972) A flexible system of enzymatic analysis. Academic Press, New YorkGoogle Scholar
  16. Nawrath H, Zong XG (1983) Elektrophysiologische Untersuchungen mit Gallopamil am Ventrikelmyokard des Menschen. In: Kaltenbach M, Hopf R (eds) Gallopamil. Springer, Berlin Heidelberg New York Tokyo, pp 69–74Google Scholar
  17. Rachman A, Kellmann L, Krieglstein J (1984) Effect of dihydroergocristine on energy metabolism studied in the isolated perfused rat brain affected by ischemia and in neuroblastoma cells deprived of oxygen and glucose. J Cereb Blood Flow Metab 4:610–614Google Scholar
  18. Siesjö BK (1978) Brain energy metabolism. John Wiley and Sons, New YorkGoogle Scholar
  19. Siesjö BK (1981) Cell damage in the brain: A speculative synthesis. J Cereb Blood Flow Metab 1:155–185Google Scholar
  20. Stieren B, Bühler V, Hege HG, Hollmann M, Neuss H, Schlepper M, Weymann J (1983) Pharmakokinetik und Metabolismus von Gallopamil. In: Kaltenbach M, Hopf R (eds) Gallopamil. Springer, Berlin Heidelberg New York Tokyo, pp 90–96Google Scholar
  21. Wieloch T, Siesjö BK (1982) Ischemic brain injury: The importance of calcium, lipolytic activities, and free fatty acids. Pathol Biol 30:269–277Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • J. Weber
    • 1
  • J. Krieglstein
    • 1
  1. 1.Institut für Pharmakologie und ToxikologieFB Pharmazie und Lebensmittelchemie der Philipps-UniversitätMarburgFederal Republic of Germany

Personalised recommendations