Advertisement

Uptake of GABA by bovine adrenal medulla slices

  • M. J. Gasque
  • S. Cañadas Correas
  • J. M. Massó Córdoba
  • M. P. González González
Article

Summary

A sodium dependent GABA uptake system has been found in bovine adrenal medulla slices. This uptake has a Km of 83.19±38.45 μM and a Vmax of 9.20±1.36 pmol/min×mg of tissue. It was inhibited by nipecotic acid and 2,4-diaminobutyric acid (IC50 67 and 38.5 μM, respectively) but not by β-alanine at concentrations up to 5 mM, a result which is similar to those found for the neuronal GABA uptake rather than the glial uptake. It is suggested that GABA uptake together with catabolic action of GABA-transaminase, also found in this tissue, could be regulating the GABA levels disposable for the proposed modulator role on catecholamine secretion of this amino acid in adrenal medulla.

Key words

GABA uptake Adrenal medulla β-Alanine Nipecotic acid 2,4-Diaminobutyric acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Airaksinen EN (1979) Uptake of taurine, GABA, 5-HT and dopamine by blood platelets in progressive myoclonus epilepsy. Epilepsia 20:503–510Google Scholar
  2. Borg J, Ramaharobandro N, Mark J, Mandel P (1980) Changes in the uptake of GABA and taurine during neuronal and glial maduration. J Neurochem 34:1113–1122Google Scholar
  3. Cañadas S, Oset-Gasque MJ, Massó JM, Fernández-Ramil M (1983) Presencia de un transportador para el GABA en médula adrenal bovina. II Congreso Luso-español de bioquímica, Barcelona, p 512, Imp Badia, Barcelona, SpainGoogle Scholar
  4. Fernández-Ramil JM, González MP (1981) Presence of GABA bypass in adrenal medullary cells. Eighth meeting of the international society for neurochemistry. Nottingham, p 183, Spottiswoode Ballantyne Ltd. colchester and London, Great BritainGoogle Scholar
  5. Fernández-Ramil JM, Sanchez-Prieto J, González MP (1982) Presence of glutamate decarboxylase in bovine adrenal medullary cells. Rev Esp Fisiol 38:91–96Google Scholar
  6. Fernández-Ramil JM, Sanchez-Prieto J, Cañadas S, González MP (1983) GABA-T in bovine medulla cells: kinetic properties and comparison with GABA-T from other tissues. Rev Esp Fisiol 39:299–304Google Scholar
  7. Iversen LL, Johnston CAR (1971) GABA uptake in rat central nervous system: comparison of uptake in slices and homogenates and the effects of some inhibitors. J Neurochem 18:1939–1950Google Scholar
  8. Iversen LL, Neal MJ (1969) The uptake of [3H]-GABA by slices of rat cerebral cortex. J Neurochem 15:1141–1149Google Scholar
  9. Iversen LL, Dick F, Kelly JS, Schon F (1975) Uptake and localization of transmitter aminoacids in the nervous system. In: Berg S, Clarke DD, Schneider D (eds) Metabolic compartmentation and neurotransmission relation to brain structure and function. Plenum Press, New York London, pp 65–89Google Scholar
  10. Johnston GAR, Stephanson AL, Twitching B (1976) Uptake and release of nipecotic acid by rat brain slices. J Neurochem 26:83–87Google Scholar
  11. Kataoka Y, Gutman Y, Guidotti A, Panula P, Wroblewski J, Cosenza-Murphy D, Wu JY, Costa, E (1984) Intrinsic GABAergic system of adrenal chromaffin cells. Proc Natl Acad Sci USA 81:3218–3222Google Scholar
  12. Kitayama S, Morita K, Dohi T, Tsujimoto A (1984) The nature of the stimulatory action of γ-aminobutyric acid in the isolated pefused dog adrenals. Naunyn-Schmiedeberg's Arch Pharmacol 317:257–261Google Scholar
  13. Livett BG, Boksa P, Dean DM, Mizobe F, Lindenbaum MH (1983) Use of isolated chromaffin cells to study basic release mechanisms. J Auton Nerv Syst 7:59–86Google Scholar
  14. Martin DL (1973) Kinetics of sodium-dependent transport of γ-aminobutyric acid by synaptosomes. J Neurochem 21:345–356Google Scholar
  15. Roskoski R (1978) Net uptake of l-glutamate and GABA by high affinity synaptosomal transport systems. J Neurochem 31: 493–498Google Scholar
  16. Saiani L, Guidotti A (1982) Opiate receptor-mediated inhibition of catecholamine release in primary cultures of bovine adrenal chromaffin cells. J Neurochem 39:1669–1676Google Scholar
  17. Sangiah S, Borowitz JL, Ying GKM (1974) Actions of GABA, picrotoxin and bicuculline on adrenal medulla. Eur J Pharmacol 27:130–135Google Scholar
  18. Schon F, Kelly JS (1975) Selective uptake of [3H]-β-alanine by glia. Association with glial uptake system for GABA. Brain Res 86:243–257Google Scholar
  19. Schrier BK, Thompson EJ (1974) On the role of glia cells in the mammalian nervous system uptake, excretion and metabolism of putative neurotransmitters by cultured glial tumor cells. J Biol Chem 249:1769–1780Google Scholar
  20. Tan CH, Abkowitz SJ (1979) Lophozozymus pictor toxin: a potent inhibitor of synaptosomal GABA uptake. Neurosci Lett 14:339–342Google Scholar
  21. Tunnicliff G (1982) A relationship between synaptosomal GABA uptake and blood pressure in five inbred strains of mice. Neurochem Int 4:321–327Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • M. J. Gasque
    • 1
  • S. Cañadas Correas
    • 1
  • J. M. Massó Córdoba
    • 1
  • M. P. González González
    • 1
  1. 1.Instituto de Bioquímica, Facultad de FarmaciaUniversidad ComplutenseMadridSpain

Personalised recommendations