Advertisement

Histochemistry

, Volume 56, Issue 3–4, pp 239–244 | Cite as

The localization of calcium by X-ray microanalysis in myopathic muscle fibers

  • Ernö Dux
  • Ida Tóth
  • László Dux
  • Ferenc Joó
Article

Summary

An electron histochemical study was undertaken to localize calcium with ammonium oxalate precipitation technique in soleus muscle of rat in normal cases and in myopathy induced experimentally by a prolonged treatment of 2,4-dichlorophenoxyacetate (2,4-D). The calcium content of precipitates was detected by energy-dispersive X-ray microanalysis. In normal cases, the electron dense precipitates containing calcium were mainly found in the vesicles of sarcoplasmic reticulum, whereas in 2,4-D induced myopathy the deposits were shifted near the Z line into the myofibrils. Calcium, because the uptake into sarcoplasmic vesicles was inhibited by 2,4-D, could attach to other binding sites, such as to the troponin-C.A long-lasting binding of calcium might lead to a prolonged activation of the actin-myosin system.

Keywords

Calcium Oxalate Myopathy Sarcoplasmic Reticulum Calcium Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertin, E.P.: Principles and practice of X-ray spectrometric analysis. p. 459–500. New York-London: Plenum Press 1975Google Scholar
  2. Braatz, R., Komnick, H.: Vacuolar calcium segregation in relaxed myxomycete protoplasm as revealed by combined electrolyte histochemistry and energy dispersive analysis of X-rays. Cytobiologie 8, 158–163 (1973)Google Scholar
  3. Constantin, L.L., Franzini-Armstrong, C., Podolsky, R.J.: Localization of calcium-accumulating structures in striated muscle fibers. Science 147, 158–160 (1965)Google Scholar
  4. Devine, C.E., Somlyo, A.V., Somlyo, A.P.: Sarcoplasmic reticulum and excitation-contraction coupling in mammalian smooth muscle. J. Cell Biol. 52, 690–718 (1972)Google Scholar
  5. Diculescu, I., Popescu, L.M.: Electron microscopic demonstration of calcium in mitochondria of the frog skeletal muscle in situ. Exp. Cell Res 82, 152–158 (1973)Google Scholar
  6. Dux, E., Tóth, I., Dux, L., Joò, F., Kiszely, Gy.: The possible cellular mechanism of 2,4-dichlorophenoxyacetate-induced myopathy. FEBS Lett. 82, 219–222 (1977)Google Scholar
  7. Ebashi, S., Endo, M.: Calcium ion and muscle contraction. Progr. Biophys. Mol. Biol. 18, 123–183 (1968)Google Scholar
  8. Ebashi, S., Ohnishi, S., Maruyama, K., Eujii, T.: Molecular mechanisms of regulation muscle contraction by Ca-troponin system. In: Proteins of contractile systems. Proc. IXth FEBS Meet. 31, 71–83, Budapest: Akadémiai Kiadó 1975Google Scholar
  9. Eyzaguirre, C., Folk, B.P., Zierler, K.L., Lilienthal, jr., J.L.: Experimental myotonia and repetitive phenomena: the veratrinic effects of 2,4-dichlorphenoxyacetate (2,4-D) in the rat. Am. J. Physiol. 155, 69–77 (1948)Google Scholar
  10. Hasselbach, W.: Relaxation and the sarcotubular calcium pump. Fed. Proc. 23, 909–912 (1964)Google Scholar
  11. Heene, R.: Electronenmikroskopische Befunde bei experimenteller Myopathie durch 2,4-Dichlorphenoxyacetate (2,4-D) beim Warmblüter. Dtsch. Z. Nervenheilk. 193, 265–278 (1968)Google Scholar
  12. Heene, R.: Studies in the formal pathogenesis of the myopathy of 2,4-dichlorophenoxyacetate. In: Experimental myopathies and muscular dystrophy. Neurology Series, Band 16. Berlin-Heidelberg-New York: Springer Verlag 1975Google Scholar
  13. Klein, R.L., Shyue-Shong, Yen., Thureson-Klein, A.: Critique on the K-pyroantimonate method for semiquantitative estimation of cations with electron microscopy. J. Histochem. Cytochem. 20, 65–78 (1972)Google Scholar
  14. Kuhn, E., Stein, W.: Modellmyotonie nach 2,4-Dichlorphenoxyacetat (2,4-D) Calciumaufnahme der Vesikel des sarcoplasmatischen Reticulums unter 2,4-D. Klin. Wschr. 44, 700–702 (1966)Google Scholar
  15. Oberc, M.A., Engel, W.K.: Ultrastructural localization of calcium in normal and abnormal skeletal muscle. Lab. Investig. 36, 566–577 (1977)Google Scholar
  16. Podolsky, R.J., Hall, T., Hatchett, S.L.: Identification of oxalate precipitates in striated muscle fibers. J. Cell Biol. 44, 699–702 (1970)Google Scholar
  17. Popescu, L.M., Diculescu, I.: Calcium in smooth muscle sarcoplasmic reticulum in situ. Conventional and X-ray analytical electron microscopy. J. Cell Biol. 67, 911–918 (1975)Google Scholar
  18. Popescu, L.M., Diculescu, I., Zelck, U., Ionescu, N.: Ultrastructural distribution of calcium in smooth muscle cells of guinea-pig Taenia coli. A correlated electron microscopic and quantitative study. Cell Tissue Res. 154, 357–378 (1974)Google Scholar
  19. Potter, J., Levis, P., Seidel, J., Lehrer, S., Gergely, J.: Ca-protein and protein-protein interactions in the regulation of the actin-myosin interaction by the contractile system. In: Proteins of contractile systems. Proc. IXth FEBS Meet. 31, 105–118. Budapest: Akadémiai Kiadó 1975Google Scholar
  20. Rabl, C.R.H.: Histologischer Nachweis löslicher Calcium-Verbindungen. Klin. Wschr. 5, 365 (1926)Google Scholar
  21. Russ, J.C.: Energy-dispersive analysis of X-rays and the scanning electron microscope. In: Thinsection microanalysis. p. 7–32. Symposium Proceedings, St. Louis, November 8, 1972 (J.C. Russ, B.J. Panessa, eds.) Raleigh: EDAX Laboratoires 1972Google Scholar
  22. Somlyo, A.V., Somlyo, A.P.: Strontium accumulation by sarcoplasmic reticulum and mitochondria in vascular smooth muscle. Science 174, 955–958 (1971)Google Scholar
  23. Somlyo, A.P., Somlyo, A.V., Devine, C.E., Peters, P.D., Hall, T.A.: Electron microscopy and electron probe analysis of mitochondrial cation accumulation in smooth muscle. J. Cell Biol. 61, 723–742 (1974)Google Scholar
  24. Winegrad, S.: The location of muscle calcium with respect to the myofibrils. J. Gen. Physiol. 48, 997–1002 (1965)Google Scholar
  25. Yarom, R., Chandler, J.A.: Electron probe microanalysis of skeletal muscle. J. Histochem. Cytochem. 22, 147–154 (1974)Google Scholar
  26. Yarom, R., Meiri, U.: Ultrastructural cation precipitation in frog skeletal muscle. I. Localization of pyroantimonate at rest and in tetanus. J. Ultrastruct. Res. 39, 430–442 (1972)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Ernö Dux
    • 1
  • Ida Tóth
    • 1
  • László Dux
    • 2
  • Ferenc Joó
  1. 1.Institute of Biophysics, Biological Research CenterHungarian Academy of SciencesSzegedHungary
  2. 2.Institute of BiochemistryMedical University of SzegedSzegedHungary

Personalised recommendations