Histochemistry

, Volume 52, Issue 3, pp 201–206 | Cite as

Activity patterns of phosphofructokinase, glyceraldehydephosphate dehydrogenase, lactate dehydrogenase and malate dehydrogenase in microdissected fast and slow fibres from rabbit psoas and soleus muscle

  • Cornelia Spamer
  • Dirk Pette
Article

Summary

Methods for standardized determination of phosphofructokinase (PFK), glyceraldehydephosphate dehydrogenase (GAPDH), lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) activities in nanogram samples of microdissected single fibres of rabbit psoas and soleus muscle are described. Fast and slow fibres in soleus muscle show lower absolute activities of these enzymes than the respective fibre types in psoas muscle. Slow fibres represent a more uniform population in the two muscles according to absolute and relative activities of the enzymes investigated. Slow fibres are characterized by high activities of MDH and relatively low activities of glycolytic enzymes. Fast fibres in the soleus muscle represent a population with high activities of MDH and glycolytic enzymes. Fast fibres in psoas muscle represent a heterogeneous population with high activities of glycolytic enzymes and extremely variable activity of MDH. More than 10-fold differences exist in the MDH activities of the extreme types of this fibre population. Differences in the activity levels of MDH in single fast type fibres but also in the activities of glycolytic enzymes between fast and slow fibres are greater than those reported between extreme white and red rabbit muscles.

Keywords

Lactate Dehydrogenase Soleus Muscle Malate Dehydrogenase Glycolytic Enzyme Rabbit Muscle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bárány, M.: ATPase activity of myosin correlated with speed of muscle shortening. J. gen. Physiol. 50, (Suppl., part 2) 197–218 (1967)Google Scholar
  2. Barnard, R.J., Edgerton, V.R., Furukawa, T., Peter, J.B.: Histochemical, biochemical, and contractile properties of red, white, and intermediate fibers. Amer. J. Physiol. 220, 410–414 (1971)Google Scholar
  3. Bass, A., Brdiczka, D., Eyer, P., Hofer, S., Pette, D.: Metabolic differentiation of distinct muscle types at the level of enzymatic organization. Europ. J. Biochem. 10, 198–206 (1969)Google Scholar
  4. Brown, M. D., Cotter, M.A., Hudlická, O., Vrbová, G.: The effects of different patterns of muscle activity on capillary density, mechanical properties and structure of slow and fast rabbit muscles. Pflügers Arch. 361, 241–250 (1976)Google Scholar
  5. Bücher, T., Luh, W., Pette, D.: Einfache und zusammengesetzte optische Tests mit Pyridinnucleotiden. In: Handbuch der physiologisch- und pathologisch-chemischen Analyse Bd. VI/A (Hoppe-Seyler/Thierfelder, eds.), pp. 292–239. Berlin-Heidelberg-New York: Springer 1964Google Scholar
  6. Burke, R.E., Tsairis, P., Levine, D.N., Zajac, F.E., III, Engel, W.L.: Direct correlation of physiological and histochemical characteristics in motor units of cat triceps surae muscle. In: New developments in electromyography and clinical neurophysiology (J.E. Desmedt, ed.), Vol. 1, pp. 23–30. Basel: Karger 1973Google Scholar
  7. Close, R.I.: Dynamic properties of mammalian skeletal muscles. Physiol. Rev. 52, 129–197 (1972)Google Scholar
  8. Dawson, D.M., Romanul, F.C.A.: Enzymes in muscle II. Histochemical and quantitative studies. Arch. Neurol. 11, 369–378 (1964)Google Scholar
  9. Dickerson, J.W.T., Widdowson, E.M.: Chemical changes in skeletal muscle during development. Biochem. J. 74, 247–257 (1960)Google Scholar
  10. Edström, L., Kugelberg, E.: Histochemical composition, distribution of fibres and fatiguability of single motor units. Anterior tibial muscle of the rat. J. Neurol. Neurosurg. Psychiat. 31, 424–433 (1968)Google Scholar
  11. Essén, B., Jansson, E., Henriksson, J., Taylor, A.W., Saltin, B.: Metabolic characteristics of fibre types in human skeletal muscle. Acta physiol. scand. 95, 153–165 (1975)Google Scholar
  12. Henneman, E., Olson, C.B.: Relations between structure and function in the design of skeletal muscle. J. Neurophysiol. 28, 581–598 (1965)Google Scholar
  13. Khan, M.A.: Histochemical characteristics of vertebrate striated muscle — A Review. Progr. Histochem. Cytochem. 8, 1–47 (1976)Google Scholar
  14. Lowey, S., Risby, D.: Light chains from fast and slow muscle myosins. Nature. (Lond.) 234, 81–85 (1971)Google Scholar
  15. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)Google Scholar
  16. Lowry, O.H., Passonneau, J.V.: A flexible system of enzymatic analysis. New York and London: Academic Press 1972Google Scholar
  17. Matschinsky, F.M., Passonneau, J.V., Lowry, O.H.: Quantitative histochemical analysis of glycolytic intermediates and cofactors with an oil well technique. J. Histochem. Cytochem. 16, 29–39 (1968)Google Scholar
  18. Müller, W.: Temporal progress of muscle adaptation to endurance training in hind limb muscles of young rats. A histochemical and morphometrical study. Cell Tiss. Res. 156, 61–87 (1974)Google Scholar
  19. Nelson, J.S., Tashiro, K.: The analysis of skeletal muscle by quantitative histochemical techniques. J. Neuropath. Exper. Neurol. 32, 371–379 (1973)Google Scholar
  20. Nolte, J., Pette, D.: Microphotometric determination of enzymeactivity in single cells in cryostat sections. II. Succinate dehydrogenase, lactate dehydrogenase and triosephosphate dehydrogenase activities in red, intermediate and white fibers of soleus and rectus femoris muscle of rat. J. Histochem. Cytochem. 20, 577–582 (1972)Google Scholar
  21. Padykula, H.A., Herman, E.: The specificity of the histochemical method for adenosine triphosphatase. J. Histochem. Cytochem. 3, 170–195 (1955)Google Scholar
  22. Perrie, W.T., Perry, S.V.: An electrophoretic study of the low-molecular-weight components of myosin. Biochem. J. 119, 31–38 (1970)Google Scholar
  23. Peter, J.B., Barnard, R.J., Edgerton, V.R., Gillespie, C.A., Stempel, K.E.: Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits. Biochemistry 11, 2627–2633 (1972)Google Scholar
  24. Pette, D., Bücher, T.: Proportionskonstante Gruppen in Beziehung zur Differenzierung der Enzymaktivitätsmuster von Skelett-Muskeln des Kaninchens. Hoppe-Seylers Z. Physiol. Chem. 331, 180–195 (1963)Google Scholar
  25. Pette, D.: Plan und Muster im zellulären Stoffwechsel. Naturwissenschaften 52, 597–616 (1965)Google Scholar
  26. Pette, D., Staudte, H.W.: Differences between red and white muscles. In: Limiting factors of physical performance (J. Keul, ed.), pp. 23–35. Stuttgart: Thieme 1973Google Scholar
  27. Pette, D., Smith, M.E., Staudte, H.W., Vrbová, G.: Effects of long-term electrical stimulation on some contractile and metabolic characteristics of fast rabbit muscles. Pflügers Arch. 338, 257–272 (1973)Google Scholar
  28. Pette, D., Dölken, G.: Some aspects of regulation of enzyme levels in muscle energy-supplying metabolism. In: Advances in enzyme regulation (G. Weber, ed.), Vol. 13, pp. 355–377. Oxford and New York: Pergamon Press (1975)Google Scholar
  29. Ranvier, L.: Propriétés et structures différentes des muscles rouges et des muscles blancs chez les lapins et chez les raies. C.R. Acad. Sci. (Paris) 77, 1030–1034 (1873)Google Scholar
  30. Romanul, F.C.A., Sréter, F.A., Salmons, S., Gergely, J.: The effect of a changed pattern of activity on histochemical characteristics of muscle fibers. In: Exploratory concepts in muscular dystrophy II. Int. Congr. Ser. (A.T. Milhorat, ed.), 333, pp. 344–348. Amsterdam: Excerpta Medica 1974Google Scholar
  31. Samaha, F.J., Guth, L., Albers, R.W.: Differences between slow and fast muscle myosin. Adenosine triphosphatase activity and release of associated proteins by p-chloromercuri-phenylsulfonate. J. Biol. Chem. 245, 219–224 (1970)Google Scholar
  32. Sarkar, S., Sréter, F.A., Gergely, J.: Light chains of myosins from white, red and cardiac muscles. Proc. Nat. Acad. Sci. (USA) 68, 946–950 (1971)Google Scholar
  33. Watzka, M.: “Weiße” und “rote” Muskeln. Z. mikrosk.-anat. Forsch. 45, 668–678 (1939)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Cornelia Spamer
    • 1
  • Dirk Pette
    • 1
  1. 1.Fachbereich BiologieUniversität KonstanzKonstanzFederal Republic of Germany

Personalised recommendations